Overview on Recent Optimization Techniques in Gastro Retentive Microcapsules by Factorial Design

Hindustan Abdul Ahad*, Haranath C, Rahul Raghav D, Gowthami M, Naga Jyothi V, Sravanthi P

Department of Industrial Pharmacy, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) - Autonomous, Anantapur, Andhra Pradesh, India.

*Corresponding author: E-mail: abdulhindustan@gmail.com

Abstract- The aim of present literature collection on past work done on gastro retentive microcapsules by factorial design. Many researchers are getting attracted towards the design of experiments (DoE) in the optimization of drug delivery systems. Only a fraction of study was optimized till date. DoE software is easy to use, affordable and availability with the simple click of a computer mouse. The authors made sufficient afford to list out the various independent variables like different polymers used and the response generated from them viz., yield, size of microcapsules, drug trapefficacy and % cumulative drug release were used in the optimization of gastro retentive microcapsules.

Kay words: microspheres, factorial design, input, response

INTRODUCTION

Experimental designs can bedefined as the strategy for setting up experiments in such a mannerthat the information required is obtained as efficiently and precisely aspossible. Well-chosen experimental designs maximize the amount of information that can be obtained for a given amount of experimentaleffort. Optimization techniques using the design of experiments(DoE), impregnated the field of pharmaceutical sciences around a few decades is gaining the attention of many researchers. The first bibliographic report on the coherent use of optimization published in 1967, on optimization of Sodium salicylate tablets by factorial design (FD). Despite tremendousadvances in various techniques of drug administration, the oral route stands on top as it remains the most natural way of administration, low cost, easy to admin andimproved compliance of the patient. More than50% of the commercially available drug delivery systems are oral. The oral administration systems of prolonged-release drugs are quitepopular, that is, a series of ventures in the conventional dosage forms. In general, prolonged drug release systemsfor oral use solid dosage forms release drugs by the mechanism ofdiffusion. Most of the DoE bibliographic hearsays in this group focus on optimizationthe echelons of these polymers used for controlling the rate of release. DoE optimization in the administration devices of the oral extended-release matrix began at the beginning of1980 [1].

The usualindependent variables in DoE in designing floating microcapsules were the amounts of polymers or other ingredients. Several types of polymers (natural, semi-synthetic, synthetic) and the type of gastro retentive dosage form (floating microcapsules) were enlisted in table 1. The use of experimental statistical designs in oral optimization of prolonged-release floating microcapsulestogether with the selected drugs [2].

Design of experiments and optimization techniques in pharmaceutical research

The DoE is a well-organizedprocess forplanning trials so that the data gained can be assessed toyield valid and objective assumptions. Optimization of a formulation or process is finding the bestpossible composition or operating conditions. Determining such a composition or set of conditions is an enormous task, probably impossible and certainly unnecessary. So, in practice, optimizationmay be measured as the search for a result that is acceptable and atthe same time the best likely within a restricted field of search. The intention of optimization is to regulate quantitatively the stimulus of the dissimilar factors composed on the response variables. The number of levels is generally constrained to two, but adequate experiments are performed to allow for interaction among factors.

Experimental designs have long been engaged to optimize numerousindustrial goods and/or procedures, in that factorial designs aregaining the attraction.

DoE Steps

- Problem statement
- Set objectives
- Choose the variables (factors, levels, and ranges)
- Shortlist the variables
- Choose response variable(s)

- Choose experimental design
- Run the experiment
- Statistical analysis of the result
- Conclusions and recommendations

DOE presentations in process development

- Improve process yield
- Reduce variability
- Reduce development time
- Reduce overall costs

DOE aims

- Determine significant variables (factors).
- Regulate where to set important factors to optimize response.
- Govern where to set factors to diminish response variability.
- A consequence of the uncontrollable factors.

DOE applications in design

- Evaluate and compare alternatives
- Evaluate material alternatives
- Product robustness
- Determine key design parameter

Optimizing Oral gastro retentive microcapsules

A comprehensive literature huntmade by the authors inpharmaceutical journals and texts discloses that the DoE optimizationprocedures have been betrothed for almost all dosage forms. This article highlights DoE optimization techniques (factorial designs) so far adopted in gastro retentive microcapsules.Earlier attempts so far did on gastro retentive microcapsules by factorial design were shown in table 1.

Drug candidate	Polymers used	Design	Reference
Carvedilol phosphate	Karayagum and Carboxymethyl locust bean gum	3 ² fullfactorial design	Bibek et al., 2019 [3]
Cefixime Trihydrate	Alginate- chitosan	3 ² fullfactorial design	Sindhumol, 2018 [4]
Metoclopramide Hydrochloride	Eudragit S100, Eudragit L100, Eudragit RS 100&RL 100 and Ethyl Cellulose (EC)	3 ² fullfactorial design	Monika et al., 2018 [5]
Clopidogrel bisulphate	HPMC K15 and Sodium bicarbonate	3 ² full factorial design	Sanjeevani et al., 2018 [6]
Metronidazole	Carbopol934P	3 ² fullfactorial design	Bolai, 2018 [7]
Saxagliptin	Sodium alginate and HPMC K4M.	3 ² fullfactorial design	Talat Farheen et al., 2018 [8]
quetiapine fumarate	EC,HPMC (K4M, K15M & K100M) and Chitosan	2 ⁵⁻² factorial design	Someshwar et al., 2018 [9]
Sildenafil citrate	Azadirachita indica gum	3 ² fullfactorial design	Vijayavani and Vidyavathi, 2018 [10]
diclofenac sodium	Tamarindseed gum-hydrolyzed polymethacrylamide-g-gellan (h- Pmaa-g-GG) composite beads	3 ² fullfactorial design	Gouranga et al., 2018 [11]
Ibuprofen	Acetylatedplantain starches	3 ² fullfactorial design	Adenike and Tokoni, 2018 [12]
Lafutidine	HPMCK4M,calcium carbonate and sodium alginate	2 ³ full factorial design	Ritesh et al., 2018 [13]
dipyridamole	HPMC K4M, and EC	3 ² fullfactorial design	Vanshiv et al., 2017 [14]
Repaglinide	Dioscorea dumetorum and Dioscorea oppositifolia	3 ² fullfactorial design	Adenike et al., 2017 [15]

Table 1: Past work done on the factorial design on gastro retentive microcapsules

osartan potassium	EC	3 ² fullfactorial design	Gokul et al., 2017 [16]
Amoxicillin	EC, carbopol-934P	3 ³ fullfactorial design	Hardenia and Gupta, 2016 [17]
Carbamazepine	Eudragit RL 100	2 ² fullfactorial design	Nusrat et al., 2016 [18]
Clarithromycin	Pullulan acetate	2 ³ fullfactorial design	Mishra et al., 2016 [19]
Carvedilol	Carbopol940, HPMC, Sodium bicarbonate and Citric acid	3 ² fullfactorial design	Khalid, 2016 [20]
cefditoren pivoxel	HPMC K4M and EC	3 ² fullfactorial design	Swathi 2016 [21]
Amoxicillin	Carbopol-934P	3 ³ fullfactorial design	Anu,2016 [22]
Diltiazem HCl	Sodiumalginate and HPMC K4M	3 ² fullfactorial design	Nareshand Shrikant, 2016 [23]
Ramipril	Sod. CMC, HPMC K4M Carbopol-934, Sodium bicarbonateand Citric acid	3 ² fullfactorial design	Iftequar, 2016 [24]
Sitagliptin	HPMC K4M and Psyllium husk	3 ² fullfactorial design	Sushil et al., 2016 [25]
Carvedilol	Sodiumalginate and sodium CMC	3 ² fullfactorial design	Sakhare et al., 2016 [26]
Paclitaxel	Acacia, Carbomer 941, hypromellose K-15, methyl cellulose, povidoneK-30, PEG 6000, gelatin, Sodium alginate, chitosan	2 ⁴ Factorial design	Chinmaya et al., 2016 [27]
Loratadine	EC, PVA	3 ² fullfactorial design	Sonam and Kamla, 2016 [28]
Melatonin	Chitosan/Pluronic® F127	3 ² fullfactorial design	Marieta et al., 2016 [29]
Salbutamolsulphate	Poly(lactic acid-co-glycolic and PVA	2 ³ fullfactorial design	Nevin et al., 1996 [30]
Ibuprofen	Poly(ε-caprolactone)– poly(ethylene glycol)–poly(ε- caprolactone) copolymer	2 ⁴ fullfactorial design	Azouz et al., 2016 [31]
Ketoprofen	EC and EudragitRL 100	3 ³ fullfactorial design	Sanjoy et al., 2016 [32]
Diltiazem HCl	Polycarbonate	2 ³ full factorial design	Mangal et al., 2015 [33]
Carvedilol	HPMCK100M and Sodium bicarbonate	3 ² fullfactorial design	Raghavendra et al., 2015 [34]
Ranitidine HCl	HPMC K100M and Carbopol 971	3 ² fullfactorial design	Jabbar, 2015 [35]
Captopril	Xanthan gum and HPMC K100M, calcium carbonate	3 ² fullfactorial design	Ahsan, 2015 [36]
Prazosin HCl	HPMC K100	2 ³ factorial design	Vanitha, 2015 [37]
Zolpidem Tartarate	EC and HPMC 5 cps	2 ³ fullfactorial design	Sachin, 2015 [38]
Carvedilol	EC and HPMC	3 ² fullfactorial design	Nila et al., 2014 [39]
Acyclovir	EC and Carbopol 940	3 ² fullfactorial design	Kyada et al., 2014 [40]

Cefpodoxime Proxetil	Eudragit S100	3 ² fullfactorial design	Monica, 2014 [41]
Ramipril	Eudragit E100. Glycerol monostearate and sodium lauryl sulfate	3 ² fullfactorial design	Tushar et al., 2014 [42]
Glipizide	HPMCK4Mand Carbopol934	3 ² fullfactorial design	Sujata et al., 2014 [43]
Cefdinir	Gum Karaya	2 ³ fullfactorial design	Sarath and Suresh, 2014 [44]
Ziprasidone HCl	EC and PVP	2 ³ fullfactorial design	Praneeth et al, 2014 [45]
Pioglitazone	HPMC K100 and Carbopol 934	3 ³ fullfactorial design	Wattamwar et al., 2014 [46]
Clopidogrel bisulphate	Xanthangum, HPMC K15M, HPMC K4M and Sodium bicarbonate	2 ³ full factorial design	Bhadouriya et al. 2013 [47]
Verapamil HCl	HPMC K4M, Sodium bicarbonateand Citric acid	3 ² fullfactorial design	Shahi et al. 2013 [48]
Duloxetine HCl	Eudragit L-100	3 ² fullfactorial design	Anupama, 2013 [49]
Atenolol	Poly Vinyl Alcohol	3 ² full factorial design	Bhadouriya et al. 2013 [50]
Cefpodoximeproxetil	Chitosan	3 ² fullfactorial design	Nappinnai and Sivaneswari, 2013 [51]
Agrochemical 2,4-D	EC, HPMC, cellulose acetate butyrate butyryle	2 ² factorial design	Fatima et al., 2013 [52]
Captopril	HPMC K4M and EC and Sodium alginate	3 ² fullfactorial design	Durgavale et al. 2012 [53]
Captopril	Eudragit RL-100 and EC	3 ² fullfactorial design	Sanket Gandhi, 2012 [54]
Ranitidine HCl	Eudragit RL-100.	2 ³ full factorial design.	Jhansipriya, 2012 [55]
Captopril	HPMC K4M	3 ² fullfactorial design	Devesh, 2012 [56]
Ciprofloxacin HCl	EC and HPMC 5 cps	2 ³ fullfactorial design	Narendra et al., 2012 [57]
Tolperisone	EC and HPMC 15 cps	2 ³ fullfactorial design	Pooja et al., 2012 [58]
Celecoxib	Eudragit L-100 and PVP	3 ² fullfactorial design	Shahzad et al., 2012 [59]
Cephalexin	EC and PVA	3 ² fullfactorial design	Kamini and Rajesh, 2011 [60]
Acyclovir	EC	3 ² fullfactorial design	Vinod, 2011 [61]
Acyclovir	Poly (D, L Lactide-co-glycolide)	2 ³ fullfactorial design	Bhosale, 2011 [62]
Metformin HCl	EC, HPMC and Sodium Alginate, sodium bicorbonate	3 ² fullfactorial design	Masaet al., 2011 [63]
Risedronatesodium	PLGA	2 ⁴ fullfactorial design	Maha et al., 2011 [64]
Stavudine	EC	3 ² fullfactorial design	Sanjay Dey et al., 2011 [65]
Pioglitazone HCl	EC and HPMC K100M	3 ² fullfactorial design	Satish, 2010 [66]
Acyclovir	psyllium husk and HPMC K4M	3 ² full factorial design	Kharia et al., 2010 [67]
Bovine serum albumin	Chitosan and Alginate	3 ² fullfactorial design	Sevgi and Aybige, 2010 [68]

Metformin	Sodium alginate and Gellan gum	3 ³ full factorial design	Nagarwal et al., 2009 [69]
Clarithromycin	HPMC 15M, HPMC K4M, HPMC 100LV and EC.	3 ² fullfactorial design	Chudiwal et al., 2009 [70]
Metformin	sodium alginate and gellan gum	3 ³ fullfactorial design	Ramesh, 2009 [71]
Glipizide	Polycarbophil and Sodium Alginate	3 ² fullfactorial design	Hosmani et al, 2009 [72]
Glipizide	sodium alginate, carbapol 974P and SCMC	2 ³ fullfactorial design	Sanap, 2009 [73]
Clarithromycin	carbopol 934 P & polycarbophil	3 ² fullfactorial design	Yogesh et al., 2009 [74]
Clarithromycin	HPMC K4M	3 ² fullfactorial design	Shahi, 2008 [75]
Tretinoin	cellulose acetate, Polyvinyl alcohol	2 ³ full factorial design	Tabbakhian et al., 2008 [76]
Cinnarizine	Eudragit S100, Eudragit RL,	3 ² fullfactorial design	Varshosaz et al., 2007 [77]
Glipizide	Chitosan	3 ² fullfactorial design	Jayvadan et al., 2005 [78]
Acyclovir	Poly(d,l-lactide-co-glycolide)	2 ² fullfactorial design	Martinez et al., 2004 [79]
Propranolol	HPMC K4M, K100LV and Carbopol P934	2 ³ full factorial design	Li, et al., 2003 [80]
5-fluorouracil	Poly(D,L-Lactide-Co-Glycolide)	3 ² fullfactorial design	Rajesh et al., 2003 [81]
Flurbiprofen	Cetyl alcohol	3 ² fullfactorial design	Anant et al., 2003 [82]
Diclofenac sodium	sodium alginate	3 ³ fullfactorial design	Gohel and Amin, 1998 [83]

Note: The percent yield, Particle size, entrapment efficiency, the initial burst release (%) and%Cumulative drug release were designated as dependent variables the above cases

Current and Future Developments

With the arrival of newer, urbane technologies, the task ofdrug delivery has become more complicated, involving a greater numberof resources in terms of cost, time, and energy. To dodge thesedevelopmental hiccups, implementation of DoE analytical tools is used. Particularly, when judgment the precise compromise is notstraight forward, an industrialist should mandatorilyreflect the use of optimization studies.DoE techniques have been applied with fruition on almost all kindsof drug delivery systems, not only for optimizing the formulations buttheir processes too. Nevertheless, there are many new drug deliveryapplications awaiting demonstrations. The pivotal benefits of DoEhave not been thoroughly investigated in some newer drug deliveryareas such as gene delivery, peptide delivery, reverse micellar systems, dendrimer based delivery systems and the like. Understandingthe formulation/method variables sensibly using experimentaldesigns will help in attaining the anticipated goals with remarkable ease.

CONCLUSIONS

The literature search unquestionably ratifies the progressively increasingpopularity of DoE in designing formulation. Verily, the number of optimization approaches would be much more in the drug industry, where DoE methods are applied much more frequently. Because only aminute fraction of industrial studies are reported, most investigations remain as only in-house information. Nevertheless, the DoE usage is far from being adopted as a standard practice. With the easyavailability and affordability of DoE software, these powerful tools canbe implemented with the simple click of a mouse. Some key constraints that depend upon the experimenter but not upon thesoftware. These include choosing suitable input variables (factors), output variables (responses) and setting appropriate factor ranges/levels, managing the experimentation, interpreting numeric outcomes andgraphic manifestations of the findings, presenting the results, and finally deciding whether to continue further with process optimization or justrun confirmatory experiment(s) to validate DoE. Hope the effort made by the authors may help in finding new research ideas.

References

- [1] Anusha GB, Ahad HA, Haranath C. A technical view on transporters-the drug pharmacokinetics dictators. MOJ Bioequiv Availab. 2019; 6(2): 39–45.
- [2] Ahad HA, Rajesh V, Gupta MVR, Lasya DN, Harish N, Khamartaz M. Fabrication and in vitro evaluation of glimepiride Hibiscus esculentus fruit mucilage sustained release matrix tablets. Int. JPharmTech Res. 2010; 2 (1): 78-83.
- [3] Bibek L, Rimpa G, Sabyasachi M and Kalyan KS. Smart karaya-locust bean gum hydrogel particles for the treatment of hypertension: Optimization by factorial design and pre-clinical evaluation, Carbohydrate Polymers, 2019; 210: 274-288.
- [4] Sindhumol PG, Sudhakaran CR. Formulation and Optimization of Floating Microcapsules of Cefixime Trihydrate by Factorial Design, Int. Jfor PharmRes. Scholars, 2018; 7 (1):
- [5] Monika KD, Pournima MH, Manisha KS and Vilasroa K. Development and characterization of gastro retentive floating microsphere for controlled release of metoclopramide hydrochloride, Indian Jof Drugs, 2018; 6(4): 189-200.
- [6] Sanjeevani SD, Arvind SP and Satish VS. Formulation and optimization of floating tablets of clopidogrel bisulphate using design of experiments, Int. J App Pharm, 2018; 10 (6): 94-102.
- [7] Bolai P, Senthil A, Mohd JQ. Development and evaluation of metronidazole loaded carbopol 934P mucoadhesive microcapsules for sustained drug release at the gastric mucosa, Jof Applied PharmSci., 2018; 8 (12): 020-031.
- [8] Talat F, Azmat Sand Sadhana S. Formulation development of mucoadhesive Microcapsules of antidiabetic drug, World Jof PharmRes., 2018; 7(1): 1549-1561.
- [9] Someshwar K, Suryakanta S, Muddana EBR, Bikash RJ,Sambamoorthy U and Vishali D. QbD-based design and characterization of mucoadhesive microcapsules ofquetiapine fumarate with improved oral bioavailability and brainbiodistribution potential, Bulletin of Faculty of Pharmacy, Cairo University, 2018; 56: 129-145.
- [10] Vijayavani S and Vidyavathi M. Azadirachita indica gum based sildenafil citrate mucoadhesive microcapsules Design and optimization, Journal of Drug Delivery Science and Technology, 2018; 47: 499-513.
- [11] Gouranga N, Amit KN, Najim SK, Souvik P and Sibasish D. Tamarind seed gum-hydrolyzed polymethacrylamide-g-gellan beads for extended release of diclofenac sodium using 32 full factorial design, International Journal of Biological Macromolecules, 2018; 114: 214-225.
- [12] Adenike O and Tokoni G. Development of ibuprofen microcapsules using acetylated plantain starches as polymer for sustained release, J. Pharm. Investig, 2018; 48:551-564.
- [13] Adenike O, Amusa SA and Moji CA. Development of repaglinide microcapsules using novel acetylated starches of bitter and Chinese yams as polymers, International Journal of Biological Macromolecules, 2017; 94 (A): 544-553.
- [14] Ritesh K, Pawan KG and Amrish C. Formulation and Evaluation of Multiple Unit Floating Beads of Antiulcer Drug, Asian Journal of Pharmaceutics, 2018; 12 (2): S680-S690.
- [15] Vanshiv SD, Joshi HP and Aware AB. Formulation and Development of Gastroretentive Dipyridamole Microcapsules: Proof of Concept by in vitro-In vivo Assessment. Indian J Pharm Sci., 2018;80(1):181-191
- [16] Gokul K, Jitendra N and Vinod M. A statistical study on the development of micro particulate sustained drug delivery system for Losartan potassium by 3² factorial design approach, Bulletin of Faculty of Pharmacy, Cairo University, 2017; 55 (1): 19-29.
- [17] Hardenia A and Gupta AK: Development and Optimization of Gastroretentive Mucoadhesive Microcapsules Using 3³ Factorial Design. Int J Pharm Sci Res 2016; 7(5): 2020-30.
- [18] Nusrat A, Ikramul H, Mohammad S, Jakir AC and Selim R. Formulation and Optimization of Carbamazepine Microcapsules by 2 Factor 2 Level Central Composite Design, Bangladesh PharmJ, 2016;19(2): 152-160.
- [19] Mishra B, Harthik RK, Manikanta A, Anand A and Sharath KRM. Formulation and Optimization of Clarithromycin Loaded with Pullulan Acetate Microsphere for Sustained Release by Response Surface Methodology, Int. J Drug Dev.& Res 2016; 8 (3): 11-15.
- [20] Khalid ES. Optimized gastroretentive floating carvedilol tablets: an approach for prolonged gastric residence time and enhanced absorption, Journal of Applied Pharmaceutical Science, 2016; 6 (6): 12-19.
- [21] Swathi C, Vijaya KB, Rajeswara RP. Formulation Development of Floating Microcapsules of Cefditoren Pivoxel by 3² Factorial Design and in Vitro Characterization, Asian Jof Pharmaceutics, 2016; 9 (5): S14.
- [22] Anu Hand Arun KG. Development and Optimization of Gastroretentive Mucoadhesive Microcapsules Using 33 Factorial Design, I JPSR, 2016; 7(5): 2020-2030.
- [23] Nishan NB and Shrikant DP. Formulation and Evaluation of Controlled Release Gastro-Retentive in situ Gel for Diltiazem Hydrochloride, Indian Jof PharmEducation and Res., 2016; 50 (3).
- [24] Iftequar S, Maria S, Lahoti S, Zahid Z, Sabina M and Furqan K et al.Formulation and evaluation of floating drug delivery system of Ramipril, Jof Innovations in Pharmand BioSci., 2016; 3 (1): 85-95.
- [25] Sushil KS, Ajay T and Shrivastava B. Formulation Optimization and In-Vivo evaluation of Floating Gastroretentive Microsphere of Sitagliptin by 3² Factorial Design.Int. J. Pharm. Sci. Rev. Res., 2016; 40(2): 198-206.
- [26] Sakhared SS, Yadav AV and Jadhav PD. Design, development and characterization of mucoadhesive gastro spheres of Carvedilol, International Journal of Applied Pharmaceutics, 2016; 8(3): 37-42.
- [27] Chinmaya M, Padala NM, Prasanna KD, Sudhir KS, Anjan KM and Monalisa D. Statistical Approach in Designing, Formulation and Optimization of Paclitaxel Loaded Mucoadhesive Microcapsules Int. Jof Innovative Res. Sci. Eng. and Tech, 2016; 5(12): 21331-21339.
- [28] Sonam Sand Kamla P. Assessing the bioadhesivity of Acconon MC 8-2 EP/NF for gastroretention of floating microsponges of Loratadine and achieving controlled drug delivery, Pharm Biomed Res, 2016; 2(2): 58-74.
- [29] Marieta DR, Maja SK, Jasmina L, Ivan P, Biserka CC, Jele FG, Anita H. Melatonin-loaded chitosan/Pluronic F127 microcapsules as in situ forming hydrogel: An innovative antimicrobial wound dressing, European Jof Pharmaceutics and Biopharmaceutics, 2016; 107: 67-79.
- [30] Nevin C and Nurhan ET. The preparation and evaluation of salbutamol sulphate containing poly(lactic acid-co-glycolic acid) microcapsules with factorial design-based studies, Int. J Pharmaceutics, 1996; 136 (2): 89-100.
- [31] Azouz L, Farid D, Farouk R and Christian G. Full factorial design optimization of anti-inflammatory drug release by PCL-PEG-PCL microcapsules, Materials Science and Engineering: C, 2016; 58 (1): 412-419.
- [32] Sanjoy KD, Jasmina K and Arunabha N. Optimization of preparation method for ketoprofen-loaded microcapsules consisting polymeric blends using simplex lattice mixture design, Materials Sci. and Eng., C, 2016; 69 (1): 598-608.
- [33] Mangal SP and Yuvraj ST. Factorial design approach for optimization of floating microcapsules of Diltiazem hydrochloride, Asian Jof Pharmaceutics, 2015
- [34] Raghavendra KG, Gunji V, Suresh JN and Satyanarayana V. Formulation Design, Optimization and Evaluation of Carvedilol Phosphate Gastro Retentive Floating Tablets

- [35] Jabbar HN, Badreldin SM, Aldawsari HM.Gastroretentive Ranitidine Hydrochloride Tablets with Combined Floating and Bioadhesive Properties: Factorial Design Analysis, In Vitro Evaluation and in Vivo Abdominal X-Ray Imaging.Curr Drug Deliv. 2015;12(5):578-00
- [36] Ahsan M, Nasir A, Amjad H, Hamid S, Pervaiz AS and Sohail M. Formulation Optimization and In-vitro Evaluation of Oral Floating Captopril Matrix Tablets using Factorial Design, Tropical Jof PharmRes., 2015; 14 (10): 1737-1748.
- [37] Vanitha K and Ramesh A. Optimization And Evaluation Of Prazosin Hydrochloride Floating Microcapsules Using Response Surface Methodology, Jof Pharmand BioSci., 2015; 10 (3): 58-68.
- [38] SachinSP, Rajendra VVS, Beduin M, Vinay R. Formulation and Evaluation of Floating Microcapsules of Zolpidem Tartarate, Journal of Pharmacy and Biological Sciences, 2015; 10 (4): 26-38.
- [39] Nila MV, Sudhir MR, Cinu TA, Aleykutty NA and Jose S. Floating microcapsules of carvedilol as gastro retentive drug delivery system: 3² full factorial design and in vitro evaluation, Drug Delivery, 2014; 21 (2): 110-117
- [40] Kyada CK and RanchDS. Optimization of Mucoadhesive Microcapsules of Acyclovir by Applying 3² Full Factorial Design, Journal of Drug Delivery Science and Technology, 2014; 24 (1): 61-68.
- [41] Monica RP, Aafaque Y and Swapnil S. Formulation and Evaluation of Floating Microcapsules of Cefpodoxime Proxetil, Indian JPharmEducation and Res. 2014; 48 (4); 100-108.
- [42] Tushar Pand Bhakti B. Statistical optimization and in-vitro evaluation of hollow Microcapsules of an anti-hypertensive agent, Acta Poloniae Pharmaceutica ñ Drug Research, 2014; 71 (1): 95-106.
- [43] Sujata A, Sradhanjali P, Nihar RP. Optimization of HPM Candcarbopolconcentrationsinnon-effervescent floating tablet through factorial design, CarbohydratePolymers, 2014; 102: 360-368.
- [44] Sarath C and Suresh KP. Formulation and evaluation of floating microcapsules of Cefdinir, Jof Pharmacy Research, 2014; 8(2): 212-216.
- [45] Praneeth KT, Ramu M, Arun KT, Anil KG, Upender M, Keerthivardhan D. Development and optimization of floating microballons for hydrodynamic delivery of Ziprasidone Hydrochloride, Int. J of Innovative Pharm Sci. and Res. 2014; 2 (8):1765-1782.
- [46] Wattamwar MM, Ratnaparkhi MP, Kutmalge MD, Jadhav AN. Formulation and in vitro evaluation of mucoadhesive microcapsules of pioglitazone Hydrochloride, Asian Pac. J. Health Sci., 2014; 1(3): 177-192.
- [47] Bhadouriya P, Kumar M and Pathak K. Formulation and in vitro evaluation of prolonged release floating microcapsules of atenolol using multicompartment dissolution apparatus. Drug Development and Industrial Pharmacy. 2013; 39(11): 1663-1671.
- [48] Shahi SR, Shinde SB, Zadbuke NS, PadalkarAN. Formulation development and evaluation of floating matrix tablet of Verapamil HCl. Asian J Pharm 2013;7:27-35.
- [49] Anupama S, Sahil K and Naveen G. Development and optimization of enteric coated mucoadhesive microcapsules of duloxetine hydrochloride using 32 full factorial design, Int J Pharm Investig. 2013; 3(3): 141–150.
- [50] Bhadouriya P, Kumar M, Pathak K. Formulation and in vitro evaluation of prolonged release floating microspheres of atenolol using multicompartment dissolution apparatus. Drug Development and Industrial Pharmacy. 2013; 39(11): 1663-1671.
- [51] Nappinnai M and Sivaneswari S. Formulation optimization and characterization of gastroretentive cefpodoxime proxetil mucoadhesive microcapsules using 32 factorial design, Jof Pharmacy Res., 2013; 7 (4): 304-309.
- [52] Fatima ZB, Zineb E and Mohamed E. Preparation and Optimization of Agrochemical 2,4-D Controlled Release Microparticles using Designs of Experiments, J. Mex. Chem. Soc. 2018; 62 (1): 1-21.
- [53] Durgavale AA, Dhole AR, Mohite SK, Magdum CS. Formulation And Evaluation of Floating Microsphere of Captopril using Different Gas Forming Agents. American Journal of PharmTech Research. 2012; 2(2): 565-575.
- [54] Pooja J, Paresh M, Kantilal V, Hiral B and Ronak D. Formulation and evaluation of controlled release floating microcapsules of Tolperisone hydrochloride, Asian J Pharm, 2012; 6, 190-197.
- [55] Sanket G, Anil B, Girish KJ, Nishant U and Rucha P. Optimization of Floating Microcapsules of Captopril Using Full Factorial Design, Asian Journal of Biomedical and Pharmaceutical Sciences, 2012; 2(15): 69-94.
- [56] Jhansipriya MV, Deveswaran R, Bharath S, Basavaraj BV, Madhavan V. Design And Optimization Of Multiparticulate Gastroretentive Delivery System Of Ranitidine Hydrochloride, Int J Pharm Pharm Sci, 2012; 4 (2): 597-603.
- [57] Devesh Kand Rakesh P. Formulation, Optimization and Evaluation of Floating Microcapsules of Captopril, Asian Journal of Biomedical and Pharmaceutical Sciences, 2012; 2(9): 1-10.
- [58] Narendra B, Prathap M, Venkateswara PR, Sudhakar AM, Ananda CH. Development and optimization of ciprofloxacin hcl hollow microcapsules (micro ballons) by using factorial design, International Journal of Research in Pharmaceutical and Nano Sciences. 2012; 1(2): 202-218.
- [59] Shahzad MK, Ubaid M and Murtaza G. Formulation and Optimization of Celecoxib-Loaded Microcapsules Using Response Surface Methodology, Tropical Journal of Pharmaceutical Research October 2012; 11 (5): 695-702.
- [60] Kamini V, Rajesh KS and Lalit LJ. Formulation and evaluation of floating microcapsules of cephalexin, 2011; 11 (2): -014.
- [61] Parmar KV, Gohel MC, Parikh RK, Shital B, Rajeshvari NS. Sustained Release Floating Microcapsules of Acyclovir: Formulation, Optimization, and Characterizationandin Vitro Evaluation, Int. J Drug Dev. & Res., 2011; 3(1):242-251.
- [62] Bhosale UV, Kusum Devi V and Jain N. Formulation and Optimization of Mucoadhesive Nanodrug Delivery System of Acyclovir, Journal of Young Pharmacists, 2011; 3 (4): 275-283.
- [63] Masareddy RS, Bolmal UB, PatilBR and Shah V. Metformin Hcl Loaded Sodium Alginate Floating Microcapsules Prepared by Ionotropic Gelation Technique: Formulation, Evaluation and Optimization, Indian Jof Novel Drug delivery, 2011; 3(2): 125-133.
- [64] Maha N, Gehanne ASA, Samar M, Abdelhamid AS and Nahed DM. A Reliable Predictive Factorial Model for Entrapment Optimization of a Sodium Bisphosphonate into Biodegradable Microcapsules, Journal of Pharmaceutical Sciences, 2011; 100 (2): 612-621.
- [65] Sanjay D,Soumen Pand Ananya M. Formulation and Optimization of Sustained Release Stavudine microcapsules Using Response Surface Methodology, ISRN Pharmaceutics, 2011, 1-7.
- [66] Satish VS, MukundGT, Nishant SG and Nilesh BD.Development and evaluation of floating microcapsules of Pioglitazone hydrochloride using ethyl cellulose, Der Pharmacia Lettre, 2010; 2(5): 261-277.
- [67] Kharia AA, Hiremath SN, Singhai AK, Omray LK and Jain SK. Design and Optimization of Floating Drug Delivery System of Acyclovir, Indian J Pharm Sci. 2010; 72(5): 599–606.
- [68] Sevgi Tand Aybige G. Evaluation of Chitosan/Alginate Beads Using Experimental Design: Formulation and in Vitro Characterization, AAPS Pharm Sci Tech, 2010; 11 (1): 460-466.
- [69] Nagarwal RC, Srinatha A and Pandit JK.In situ forming formulation: development, evaluation, and optimization using 3³ factorial design.AAPS PharmSci. Tech. 2009;10(3):977-84.
- [70] Chudiwal PD, Pawar PL, Nagaras MA, Mandlik SK, Pandya SV and Wakte P. Statistical Evaluation and Optimization of Influence of Viscosity and Content of Polymer on Floating Microcapsules of Clarithromycin, Int. J PharmTech Res. 2009; 1(4): 1366-1372.

- [71] Ramesh CN, Srinatha A and Jayanta KP. In Situ Forming Formulation: Development, Evaluation, and Optimization Using 3³ Factorial Design, AAPS PharmSci. Tech. 2009; 10(3): 977-984.
- [72] Hosmani AH, Kasture PV, Gonjari ID and Karmarkar AB. Study of formulation variables on properties of glipizide mucoadhesive microcapsules by factorial design, DARU, 2009; 17 (4): 236-244.
- [73] Sanap GS. Formulation and evaluation of mucoadhesive beads of glipizide using 23 factorial design, Journal of Pharmacy Research, 2009; 2(5): 934-938.
- [74] Yogesh ST, Vinayak SM and Shashikant CD. Use of carbomers to designmucoadhesive microcapsulesfor an anti- h. Pyloridrug, clarithromycin International Journal of PharmTech Research, IJPRIF, 2009: 1 (4): 1421-1428.
- [75] Shahi SR, Shinde NV, Agrawal GR, Shaikh SA, Shaikh SS and Somani VG et al. Statistical optimization of gastric floating system for oral controlled delivery of Clarithromycin, Rasayan J. Chem, 2008; 1 (2): 367-377.
- [76] Tabbakhian M, Sharifian A and Shatalebi MA. Preparation and in vitro characterization of tretinoin-containing microcapsules suited for dermatological preparations, Resin PharmSci. 2008; 3(2): 31-40.
- [77] Varshosaz J, Tabbakhian M and Zahrooni M. Development and characterization of floating microballoons for oral delivery of cinnarizine by a factorial design, Journal of Microencapsulation, Micro and Nano Carriers, 2007; 24 (3): 253-262.
- [78] Jayvadan KP, Rakesh PP, Avani FA and Madhabhai MP. Formulation and evaluation of mucoadhesive glipizide microcapsules, AAPS PharmSci. Tech, 6 (1); 2005: E49–E55.
- [79] Martinez SC, Herrero VR and Negro S. Optimisation of Aciclovir poly(d,l-lactide-co-glycolide) microcapsules for intravitreal administration using a factorial design study, Int. J of Pharmaceutics, 2004; 273: 45-56.
- [80] Li S, Lin S, Daggy BP, Mirchandani HL and Chien YW.Effect of HPMC and Carbopol on the release and floating properties of Gastric Floating Drug Delivery System using factorial design. Int J Pharm. 253(1-2); 2003:13-22.
- [81] Rajesh KM, Vikram UK. Application of novel concept of mixed solvency in the design and development of floating microcapsules of furosemide, Int. J Pharm Pharm Sci, 2013; 5 (2): 167-175.
- [82] Anant P, Manish M, Amit KT, Bhaskar C and Kadam SS. Preparation and characterization of flurbiprofen beads by melt solidification technique, AAPS PharmSci. Tech, 2003; 4 (4): 514–522.
- [83] Gohel MC and Amin AF. Formulation optimization of controlled release Diclofenac sodium microcapsules using factorial design, J of Controlled Release, 1998; 51 (3): 115-122.