






Figure 1 

 

ii. Assessment of the number of representative individuals of pupal and adult stages: 

Number (mean +/- SD) of representative individuals of pupa and adult stages generated up to 100 hours from 
their initial time of appearances, has been  shown in Figure 2. The figure reveals that, compared to controls, 
significant reduction in number of pupae and emergent adults was intiated in the fly cultures exposed to HU 
concentration of 0.2 and 0.1 mg/L respectively. However, hallmark of developmental inhibition (P=<0.0001 ) 
was observed in cultures exposed to  HU concentration of 0.4 mg/L where, compared to control,  
metamorphosis of developing flies  into adult was reduced by approximately77% . 

The percent reduction of population of pupae and emergent adults compared to controls in response to exposure 
to varying concentration of HU has been shown in the Table 1.  

Figure 2: Population data of D. melanogaster exposed to varying concentrations of Hydroxyurea(HU). Data are 

represented as the number  (Mean +/-SD) of pupae and young adults appeared up to 100 hours  from their initial 

time  of appearances  in control and test cultures.  

Figure 2 
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Table1. Percent reduction of population of pupae and emergent adults compared to controls in response to exposure to varying  HU 

concentration. 

Concentration of HU Percent (%) reduction of pupa 

population 

Percent (%) reduction of emergent 

adult population 

0.1mg/ml 2.4 25 

0.2 mg/ml 22.3 52 

0.3 mg/ml 24 67 

0.4 mg/ml 76 77 

iii. Assessment of chromosomal abnormalities:  

Polytene chromosomes prepared from the third instar larvae of the flies exposed to HU at all concentrations (i.e. 
0.1mg/ml, 0.2mg/ml, 0.3mg/ml and 0.4mg/ml) exhibited a number of chromosomal rearrangements. However, 
occurrence of chromosomal aberrations at HU concentration of 0.1 mg/ml was very low. Chromosomal 
abnormalities were represented by asynapsis, ectopic pairing, constriction etc (Figures 3,4,5,6 and7). Frequency 
of chromosomal rearrangements in larval polytene chromosomes was highest at HU concentrations of 0.4mg/ml 
followed by decreasing HU concentrations.  

Figure 3 Ectopic pairing in polytene chromosome in response HU concentration 0.3 mg/ml. 

 

Figure 4 Asynapsis  in response HU concentration 0.3 mg/ml. 
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Figure 5 Ectopic pairing, constriction  in response HU concentration 0.3 mg/ml. 

 

Figure 6 Ectopic pairing in response HU concentration 0.4mg/ml. 

 

Figure 7 Chromosomal constriction in response HU concentration 0.4 mg/ml. 

 

Discussion: In this study an assessment of dose dependent effects on development of a drug  i.e. HU, which is 

used for treating cancer and  inherited blood disorder like sickle cell anemia, was made by using the model 

organism D. melanogaster. It was observed that the drug caused dose dependent delays in metamorphosis as 

well as reduction in number of emergent adults of this fly. However, significant delay in the initial appearance 

of pupa and emergent adults was observed in cultures exposed to HU concentration of 0.3 ad 0.4 mg/ml of 
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which later concentration conferred highest significant impact. Although the significant delay in the initial 

appearance of the pupa and adult stages commenced at HU concentration of 0.3 mg/ml, significant reduction in 

pupa and emerging adult number were initiated by further lower HU concentrations of 0.2 and 0.1 mg/ml 

respectively. This indicates that, compared to controls, most of the developing flies under the exposure of HU 

could not tolerate even these lower concentrations of HU which caused the paucity of their metamorphosis. In 

addition, metamorphosis into adult stage was drastically reduced with the increasing doses of HU (Table 1). The 

developing flies which survived the challenge of these two HU concentration, suffered the significant delays in 

metamorphosis. In other words, HU exerted a distinct negative impact on the development of this fly. After 

extensive search we could find of only one report regarding  the experimental evaluation of the impact of this 

drug on the development of D.melanogaster 23. In that study, flies were exposed to only two concentrations of 

HU viz, 0.1 and 0.25 mg/ml. When we compared our result with the results of the aforesaid study, it was 

observed that reduction of emergent adult population in our case was many folds higher than the reduction of 

adult population  reported in that study. We speculate that the differences in tolerance of HU by the flies might 

be due to the strain differences of D. melanogaster used by us and the above mentioned group, since it has been 

reported that strain differences in Drosophila make differences in their tolerance for chemicals24. 

Mutagenic potential of chemical and physical agents can be evaluated by the extent of chromosomal lesions 
induced by them and experimental observation of polytene chromosomes of dipterans especially Drosophila 
provides us an opportunity to see these effects in an magnified way due to the enormous size of this 
chromosome25. In our study, examination of the polytene chromosomes in the third instar larval stage of D. 
melanogaster, exposed to varying concentration of HU exhibited several chromosomal rearrangements in the 
forms of constriction,  ectopic recombination, asynapsis etc. These kinds of chromosomal abnormalities were 
found to be of very negligible occurrence in case of controls. Although we found a few chromosomal structural 
abnormalities in larvae exposed to HU at 0.1 mg/ml concentration, significant occurence of these chromosomal 
aberrations was evident at HU concentrations 0.2 mg/ ml. that was increased further with increasing doses of 
HU.   

One abundant rearrangement that we observed was the constriction of polytene chromosomes. Due to the 
inhibition of DNA replication, constrictions in chromosomes may appear and the sites become fragile that 
facilitate their breakages26,27. As it has been mentioned earlier that HU interferes with DNA replication, 
occurrence of such chromosomal constrictions were quite possible in our study that might ultimately repress the 
developmental gene expressions in  Drosophila larvae. In asynapsis, homologs of polytene chromosome fail to 
pair with each other. As homologs remain attached with each other by fibrillar connectors28 or bundles of 
microfilaments29, we speculate that chemical interaction of drugs with these structures may cause their distortion 
rendering the separation of homologs in polytene chromosomes. This separation of homologs may provide  
severe impacts in larval gene expressions as it can cause the disruption of trans-interaction (transvection) of 
enhancer and promoter elements that occurs during their paired state 30. Ectopic pairing, which was observed in 
our larval chromosomes, occur through linkages made by heterochromatin threads between regions of sequence 
homology present either at different regions of the same chromosomal arm or in different arms of a 
chromosome. If the linkage occurs between adjacent regions of sequence homology, the intermediate portion of 
the chromosome bulges out to form a toroidal structure. It is possible that due to this linkage, discrete 
homologous nucleotide sequences in a chromosome might unite to produce a new gene sequence 25, 31.  We 
speculate that such nascent gene sequence might code for an unusual protein not normally found in Drosophila 
larvae and proved to be detrimental for development of the flies. We speculate that HU  hindered the normal 
expression of genes required for development of the fly  by inducing  deleterious rearrangement of 
chromosomes. Asyanapsis possibly caused inhibition of  interactions of controlling elements for gene 
expressions in the larvae. Ectopic pairing might be responsible for creating new genetic sequences 25 the product 
of which was deleterious for embryonic development. Constrictions of  polytene chromosomes in larvae 
exposed to HU might result into chromosomal breakage as they represent the fragile sites on chromosomes 26. 
This might result in disruption of the expression of genes needed for  fly development. Thus it seems probable 
that wide range of larval chromosomal abnormalities those appeared  in the polytene chromosomes of D. 
melanogaster, in response to HU exposure,  might cause serious inhibition of  the expression of the genes 
needed development of the fly.  D. melanogaster serves as  an important model for developmental biology 32  
and toxicological studies 33.  Furthermore, owing to extensive genetic homology between human and D. 
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melanogaster, the experimental results obtained by using this fly raises an  alarm regarding the negative impacts 
of HU exposure during human pregnancies  that  may bring about chromosomal abnormalities in developing 
embryo leading to deleterious effect on offsprings. child births. 

Conclusion 

Our present study  revealed that HU exerted negative impact on the development of D. melanogaster, a model 
organism, in a dose dependent manner. Although the drug is very useful in treating cancer and hereditary blood 
disorders, our study has proved that it exerts genotoxic effects on eukaryotic chromosomes. Chromosomal 
damages in turn may have deleterious effects on the expressions of genes needed for the normal development. 
Owing to substantial genetic homology between human and Drosophila, results of our study strongly indicates 
the possibility of obtaining analogous outcome in human due to the exposure of HU during development. Thus 
the need of exercising cautious use of this drug during human pregnancy is strongly recommended. 
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