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Abstract 

A set of twenty five compounds of polyhalogenated dioxins with toxicity data in EC50 was subjected to 
quantitative structure activity relationship studies using Material Studio software 7.0. Large number of 
molecular descriptors was calculated from the level of theory DFT (BLYP/6-31G*) and semi-empirical (AM1) 
using the softwares Spartan 14v1.1.2 and PaDel descriptor. The correlation between the toxicities and the DFT 
and semi-empirical calculated descriptors was examined. Genetic Function Approximation (GFA) technique 
was used to generate ten QSAR models for each of the two level of theory, out of these models the one with the 
highest statistical significance was selected as the best for the two methods. DFT (R2 = 0.9516, R2

adj = 0.9389, 
R2

cv = 0.9091, LOF = 0.5882, significance of regression F-value = 74.8019) and Semi-empirical (R2 = 0.96803, 
R2

adj = 0.9596, R2
cv = 0.9518, LOF = 0.3877, significance of regression F-value = 115.0703). These descriptors 

were found to be responsible for the toxicities of polyhalogenated dioxins. DFT (BCUTc-1h, VP-3, SssssGe, 
ETA_dAlpha_B and ETA_BetaP) and semi-empirical (EHOMO, SP-7, ETA_Shape_P, ETA_EtaP_L and 
GRAV-4). From the comparison of the models generated using DFT and semi-empirical and based on their 
statistical parameters, semi-empirical (AM1) has slightly better predictive power than DFT (BLYP/6-31G*). 

Introduction 

Several studies have shown that since the middle of the 20th century there has been an increasing concern about 
the exposure of humans and wildlife to certain xenobiotic that were released into the environment due to diverse 
anthropogenic activities.[1] One group of environmental toxicants that is of particular interest relative to 
potential environmental health effects is dioxin-like chemicals (DLCs).These ubiquitous compounds are 
hydrophobic, lipophilic and resistant to biological and chemical degradation, properties that impart persistency 
and a propensity to bio-accumulate and biomagnify to concentrations that can cause harmful effects. DLCs 
include polychlorinated dibenzo-p-dioxins and dibenzo furans (PCDD/Fs), dioxin-like polychlorinated 
biphenyls (DL-PCBs), polycyclic aromatic hydrocarbons (PAHs), as well as a multitude of other partially 
known and unknown compounds [2-7]. Dioxins and dioxin-like compounds  are  persistent  organic  pollutants  
(POPs)  that can  enter  water  bodies  and  eventually  sink  into  the sediment through various transportation 
routes [8]Wildlife and people are constantly exposed to dioxins through ingestion of dioxins that are present at 
low levels as environmental contaminants in food. Although they are at low levels in food, some dioxins are 
very slowly removed from the body and therefore they accumulate in fat tissue. In laboratory animals, dioxins 
are highly toxic, cause cancer, and alter reproductive, developmental and immune function. The in vivo 
behavior of these compounds depends on their uptake, distribution and metabolism as well as modifying factors 
such as species, age and reproductive status [9-10]Food is  the  major  source  for  human  exposure  to  and  
dioxins and dioxin-like compounds, especially fatty foods: dairy products (butter, cheese, fatty milk), meat, egg, 
and fish. Food of animal origin accounts for 95 % of total exposure. The current average body burden of dioxins 
is about 5–50 ng/kg (as WHO TEq in fat; pg/g = ng/kg) or 100–1000 ng (WHO-TEq) per person which is close 
to the lowest concentrations possibly causing health effects. Some subgroups within the society (e.g., nursing 
babies and people consuming plenty  of  fish)  may  be  exposed  to  higher  than  average  amounts  of these 
compounds and are thus at greater risk. Dioxin concentrations have been screened in five WHO international 
studies, and in Central Europe the concentrations  have  decreased  in  breast  milk  from  about  40  ng/kg  (as 
TEq in milk fat) in 1987 to below 10 ng/kg in 2006. PCBs have decreased at about the same rate. The decrease 
in environmental concentrations is due to cessation of PCB use and improved incineration technology [11].  
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The way in which dioxin affects cells is similar in some way to the way in which hormones such as estrogen 
work. Dioxin enters a cell and binds to a protein present in cells known as the Ah receptor. The receptor when 
bound to dioxin can then bind to DNA and alter the expression of some genes. This can lead to alterations in the 
level of specific proteins and enzymes in the cell. While it is not known exactly how changes in the levels of 
these different proteins cause the toxicity of dioxin, it is believed by most scientists that the initial binding of 
dioxin the Ah receptor is the first step. [12-14]. Binding of these dioxin-like compounds can cause a great 
diversity of biological effects including hepatotoxicity, endocrine effects, immunotoxicity, body weight loss, 
teratogenicity, carcinogenicity and the induction of diverse enzymes such a aryl hydrocarbon hydroxylase 
(AHH) and 7-ethoxyresorufinOdeethylase (EROD) in various organisms [15-16].  Due to the problems of 
assessing the fate and toxicity of large number of chemicals, alternative method has been sought to classical in 
vivo animal texting.  In the area of computer – aided toxicity prediction, quantitative structure activity 
relationship (QSAR) have been seen as an attractive method for toxicity and fate assessment [17].The study of 
the quantitative relationship between toxicity/activity and molecular structure (QSTR/QSAR) is an important 
area of research in computational chemistry and has been widely used in the prediction of toxicity and other 
biological activities of organic compounds [18-19].  
In this study, genetic function approximation (GFA) which is a statistical modeling algorithm that builds 
functional models of experimental data. Since its inception, several applications of this algorithm in the area of 
quantitative structure–activity relationship modeling have been reported [20-19]. The genetic function 
approximation (G FA) algorithm is a genetic algorithm (GA) [21] derived from the previously reported 
G/SPLINES algorithm [22] and has been recently applied to the generation of QSAR models [23]. The main 
purpose of this work is to find out how accurate QSAR analysis (using Material studio 7.0 software and the 
statistical tool Genetic functional algorithm) predicted the toxicity of polychlorinated aromatic compounds, and 
also to find out the descriptors responsible for producing such toxicity other than the once reported by [24-25].  
Density functional theory (DFT) is a computational quantum mechanical modelling method used 
in physics, chemistry and materials science to investigate the electronic structure (principally the ground state) 
of many body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the 
properties of a many-electron system can be determined by using functions, i.e. functions of another function, 
which in this case is the spatially dependent electron density. Hence the name density functional theory comes 
from the use of functions of the electron density. DFT is among the most popular and versatile methods 
available in condensed-matter physics, computational physics, and computational chemistry [26]. In contrast, 
the semi-empirical Austin Method 1 (AM1) deals only with the valence electrons, thus significantly reducing 
the complexity and hence time of one of the most computationally expensive steps [27]. The aim of this research 
is to find how accurate QSAR analysis (using Material studio 7.0 software and the statistical tool Genetic 
Function Approximation) can predict the toxicities of polyhalogenated dioxins and to compare the predictive 
power of the models generated using DFT calculated molecular descriptors and the once generated using semi-
empirical calculated descriptors. 

QSAR METHODOLOGY 

Data Set Biological Toxicity 

A data set of 25 molecules of polychlorinated dibenzo-p-dioxin and polybrominated dibenzo-p-dioxin was taken 
from the literature. These molecules were randomly divided into training set of 17 molecules and test set of 8 
molecules. The general structure of all the compounds used for QSAR analysis and their experimental biological 
toxicity (EC50-Effective Concentration at 50%) are given in Table-1. The toxicities of the compounds were 
converted to negative logarithmic scale (pEC50) to achieve normal distribution. 
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Table 1:  Structures and biological activities of training set compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometry optimization and Computation of molecular descriptors 

Molecular descriptor can be defined as the essential information of a molecule in terms of its physicochemical 
properties such as constitutional, electronic, geometrical, hydrophobic, lipophilicity, solubility, steric, quantum 
chemical, and topological descriptors [28]. The structures of all the 25 molecules were optimized by Density 
Functional Theory (BLYP/6-31G*) and Semi-empirical (AM1) level of theory using Spartan 14v1.1.2 software. 
Using the optimized structures, Spartan 14v1.1.2 and PaDel descriptor software were used to compute about 
1700 different types of molecular descriptors. 
 Elimination and Selection of molecular descriptors 
Prior to any statistical modeling, a preprocessing step was employed to discard descriptors having the same 
values for all the molecules. After preprocessing, 332 molecular descriptors remained. Since this number of the 
remaining descriptors was still very much larger than the training compounds [29], a feature selection procedure 

S/N Polychlorinated-dibenzo-p-dioxins     

 
X=Cl or Br and y=Cl or Br 

Toxicity(pEC50) 

1 2,3,7,8-tetrachlorodibenzo-p-dioxin 8.00 

2 1,2,3,7,8-pentachlorodibenzo-p-dioxin 7.10 

3 2,3,6,7-tetrachlorodibenzo-p-dioxin 6.80 
4 2,3,6-trichlorodibenzo-p-dioxin 6.66 
5 1,2,3,4,7,8-hexachlorodibenzop-dioxin 6.55 
6 1,3,7,8-tetrachlorodibenzo-p-dioxin 6.10 
7 1,2,4,7,8-pentachlorodibenzo--dioxin 5.96 
8 1,2,3,4-tetrachlorodibenzo-p-dioxin 5.89 
9 2,3,7-tetrachlorodibenzo-p-dioxin 7.15 
10 1,2,3,4,7-pentachlorodibenzo-p-dioxin 5.19 
11 1,2,4-Trichlorodibenzo-p-dioxin 4.89 
12 2,8-dichlorodibenzo-p-dioxine 5.49 
13 1,2,3,4,6,7,8,9-Octachlorodibenzo-o-dioxin 5.00 
14 1-chlorodibenzo-p-dioxin 4.00 
15 2,3,7,8-tetrabromodibenzo-p-dioxin 8.82 
16 2,3-dibromo-7,8-chlorodibenzo-p-dioxin 8.83 
17 2,8- dibromo-3,7-dichlorodibenzo-p-dioxin 9.35 
18 2-Bromo-3,7,8-trichlorodibenzo-p-dioxin 7.94 
19 1,3,7,9-tetrabromodibenzo-p-dioxin 7.03 
20 1,3,7,8-tetrabromodibenzo-p-dioxin 8.70 
21 1,2,4,7,8-pentabromodibenzo-p-dioxin 7.77 
22 1,2,3,7,8-pentabromodibenzo-p-dioxin 8.18 
23 2,3,7-tribromodibenzo-p-dioxin 8.93 
24 2,7-dibromodibenzo-p-dioxin 7.81 
25 2-Bromodibenzo-p-dioxin 6.53 
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was employed to select those descriptors that have high level of correlation with the pEC50 toxicity. This 
correlation analysis was performed using Multiple Linear Regression.  
Generation of QSAR Models 

The selected descriptors were used to construct 10 models from DFT and Semi-empirical techniques using the 
well-known statistical algorithm, Genetic Function Algorithm (GFA) which was recently used in QSAR study 
[30]. A distinctive feature of GFA is that it produces a population of several models instead of generating a 
single model, as do most other statistical methods. Genetic algorithm makes superior models to those developed 
using stepwise regression techniques because it selects the basis function genetically. The main use of genetic 
algorithms in QSAR targets variable selection and model identification [31-33]. The genetic algorithm handles 
the selection, while the model paradigm generates the evaluation function 
Model Validation and statistical parameters 

The best models from optimization by DFT and by SE were selected on the basis of various statistical 
parameters such as squared correlation coefficient (R2), cross-validation squared coefficient (R2cv), adjusted 
squared correlation coefficient (R2

adj), F-test value Lack-Of-Fit (LOF) and Standard error of estimate (SE) and 
Variance Inflation Factor (VIF. The predictive capacity of the model, was tested using internal validation 
techniques for both DFT and SE. Univariate analysis was performed to check the symmetry distribution of 
toxicity data. Skewness, kurtosis and other parameters were calculated as shown in Table-  
Coefficient of multiple determination (R2) 

To assess the goodness-of-fit, the coefficient of multiple determination is used. R2 estimates the proportion of 
the variation in the response that is explained by the predictor. 																																																								ܴଶ = 1 − ∑ ∑స૚࢏ࡵ૛(࢏ෝ࢟ି࢏࢟) స૚࢏ࡵ(ഥ࢟ି࢏࢟)                      (1) 

Where yi is the observed dependent variable, ݕത the mean value of the dependent variable and ݕො the calculated 
dependent variable. If there is no linear relationship between the dependent variable and the descriptors then R2 

= 0.00; if there is a perfect fit then R2 = 1.00. R2 values higher than 0.5 indicates that the explained variance by 
the model is higher the unexplained one. 
Internal validation- R2cv 

Cross-validation square correlation coefficient R2 (LOO-Q2) is calculated according to the formula: 

 ܳଶ = 1 − ∑(௒೛ೝ೐೏ି௒)మ∑(௒ି௒ത)మ …           (2) 

Adjusted R2 (R2
adj) 

 The value of R2 can generally be increased by adding additional predictor variables to the model, even if the 
added variable does not contribute to reduce the unexplained variance of the dependent variable. It follows R2 
should be used be caution. This can be avoided by using another statistical parameter the so-called adjusted R2 
(R2

adj). 

    ܴ௔ௗ௝ଶ = 1 − (1 − ܴଶ)(ூିଵூି௄)          (3) 

R2
adj is interpreted similarly to the R2 value, except that it takes into consideration the number of degrees of 

freedom. The value of R2
adj decreases if an added variable to the equation does not reduce the unexplained 

variable. 
Standard error of estimate (SEE) 

  SEE = 	ට∑ (௬೔ି௬ො೔)మ಺೔సభ(ூି(௄ାଵ))            (5) 

The smaller the value of SEE is, the higher the reliability of the prediction. However, it is not recommended to 
have the standard error of estimate smaller than the experimental error of the biological data, because it is an 
indication of over fitted model. 
F-value 

The F-value is determined using equation-6 																																																									ܨ = ∑ (௬೔ି௬ത)మ (௄ିଵ)⁄಺೔సబ∑ (௬೔ି௬ො೔)మ (ூି௄)⁄಺೔సభ         (6) 

The higher the F-value, the greater the probability that the equation is significant [34].  
Lack of fit (LOF)  
A “fitness function” or lack of fit (LOF) was used to estimate the quality of the model, so that best model 
receives the best fitness score. The error measurement term is determine by equation-1  
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ܨܱܮ = ௅ௌா(ଵି೎శ೏∗೛ಾ )మ              (7) 

where ‘c’ is the number of basic functions (other than constant term); ‘d’ is smoothing parameter (adjustable by 
the user); ‘M’ is the number of samples  in the training set; LSE is least squares error and ‘p’ is the total 
numbers of the features contained in all basis functions [35]. 
Variance Inflation Factor (VIF)  

The multi-collinearity between the above five descriptors was detected by calculating their variation inflation 
factors (VIF), which can be calculated as follows: ܸܨܫ = 11 − ܴଶ 				(8) 
Where R2 is the correlation coefficient of the multiple regression between the variables within the models. If 
VIF equals to 1, then no inter-correlation exists for each variable; if VIF falls into the range of 1–5, the related 
model is acceptable; and if VIF is larger than 10, the related model is unstable and a recheck is necessary [36-
37]. 
Y-Randomization Test. 

The statistical significance of the relationship between the toxicity of polyhalogeneted compounds and chemical 
structure descriptors was further demonstrated by randomization procedure. Y-randomization is the most 
popular and probably the most powerful technique for validation of a given QSAR model [38-39]. In this 
approach, dependent variable vector (the toxicities in this study) is randomly shuffled and a new QSAR model is 
built using the independent variables. The procedure is repeated number of times. If the new QSAR model has 
lower R2 and R2

cv values for several trials (100 times in this study), then the given QSAR model is thought to be 
robust. Therefore, Y-randomization is useful to avoid any chance-comer correlation between dependent variable 
vector and independent variables. This Y-randomization was tested for model and low values of R2 and R2

cv 
were observed   

Table-2: criteria for selection of good model 

S/N CRITERIA FOR SELECTION OF MODEL 

1 N = number of molecules (> 20 molecules) 
2 K= number of descriptors in a model (statistically N/5 descriptor in a     model) 
3 df = degree of freedom (N-K-1) (higher is better). 
4 R2 =coefficient of determination (> 0.7) 
5 R2cv = cross-validation square correlation (> 0.5) 
6 R2

adj = adjusted squared correlation coefficient  (> 0.5) 
7 R2

pred = predicted coefficient of determination (> 0.5) 
8 SEE = standard error of estimate (smaller is better) 
9 F-test = F-test for statistical significance of the model (higher is better, for some set 

of descriptors and compounds) 

RESULTS AND DISCUSSION 

Using DFT and Semi-empirical calculated molecular descriptors, genetic function approximation was used to 
performed QSAR regression on 25 molecules of polyhaloginated dioxins compounds to generate 10 models 
from both DFT and Semi-empirical techniques. The toxicity (pEC50) values were used as dependent variables 
and calculated molecular descriptors as independent variables as described by the equations in Table. The best 
models from both the DFT and SE techniques were selected on the basis of their statistical parameters as shown 
in Table-4. 
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Table-3: Validation parameters for DFT and SE 

  Density Functional Theory (DFT)    Semi-Empirical (SE)  
Parameter   Equation1  Parameter     Equation1 
Friedman LOF 0.58817700 Friedman LOF 0.38776300 
R-squared 0.95165500 R-squared 0.96803200 
Adjusted R-squared 0.93893300 Adjusted R-squared 0.95962000 
Cross validated R-
squared 

0.90908100 Cross validated R-
squared 

0.95180300 

Significant Regression Yes Significant Regression Yes 
Significance-of-
regression F-value 

74.80187300 Significance-of-
regression F-value 

115.07027100 

Critical SOR F-value 
(95%) 

2.76172000 Critical SOR F-value 
(95%) 

2.76172000 

Replicate points 0 Replicate points 0 
Computed experimental 
error 

0.00000000 Computed experimental 
error 

0.00000000 

Lack-of-fit points 19 Lack-of-fit points 19 
Min expt. error for non-
significant LOF (95%) 

0.28327500 Min expt. error for non-
significant LOF (95%) 

0.23000500 

Table-4: Generated models from DFT and SE techniques 

DFT Y=42.7676*(BCUTc_1h)+7.7158*(VP-3)+5.9318*(SssssGe) 
-2.2284*(ETA_dApha_B)+32.7353*(ETA_BetaP)+1.0527 

 
SE Y=0.1841*(EHOMO)+5.0800*(SP-7)+10.6744*(ETA_Shape_P) 

+284.0681*(ETA_EtaP_L)-0.0023*(GRAV_4)+101.5783 
 

Table-5: Correlation for DFT calculated descriptors 

  pEC50 BCUTc-1h VP-3 SssssGe ETA_dAlpha_B ETA_BetaP 

pEC50 1 
BCUTc-1h -0.3672 1 
VP-3 0.1166 0.4877 1 
SssssGe -0.4491 0.6806 0.6530 1 
ETA_dAlpha_B -0.3274 0.6973 0.8278 0.9602 1 
ETA_BetaP 0.5501 0.0551 0.7339 0.0072 0.2750 1 

Table-6: Correlation for SE calculated descriptors 

  pEC50 EHOMO SP-7 ETA_Shape_P ETA_EtaP_L GRAV-4 

pEC50 1 
EHOMO -0.4682 1 
SP-7 0.1118 -0.4024 1 
ETA_Shape_P 0.5341 -0.8841 0.7369 1 
ETA_EtaP_L 0.6588 -0.9450 0.2396 0.8140 1 

GRAV-4 0.4395 -0.9255 0.6399 0.9507 0.8773 1 
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Table-7: Variance Inflation factor (VIF) for DFT and SE approaches 

Density Functional Theory (DFT) Semi-empirical (SE) 
Descriptors VIF Descriptors VIF 
BCUTc-1h 1.158 EHOMO 1.281 

VP-3 1.014 SP-7 1.0127 
SssssGe 1.2526 ETA_Shape_P 1.399 

ETA_dAlpha_B 1.120 ETA_EtaP_L 1.7668 
ETA_BetaP 1.439 GRAV-4 1.2394 

Table-8: Definition of the descriptors used in the models 

Descriptors Definition 
BCUTc-1h nlow highest partial charge weighted BCUTS 

 
VP-3 Chipath descriptor: valence path, order 3 

SssssGe Sum of atom type E-state:>Ge< 
ETA_dAlpha_B Extended Topochemical Atom descriptor: measure of count of hydrogen bond 

acceptor atoms and/ or polar surface area 
ETA_BetaP Extended Topochemical Atom descriptor: a measure of electronic features of the 

molecules relative to molecular size. 
EHOMO Energy of Highest Occupied Molecular Orbital. 

SP-7 Chipath descriptor: Simple path, order 7. 
ETA_Shape_P Extended Topochemical Atom descriptor: Shape index P 

ETA_EtaP_L Extended Topochemical Atom descriptor: 
GRAV-4 Gravitational index descriptor: gravitational index of all pairs of atoms (not just 

bonded pairs). 

Table-9: Actual and predicted toxicity values for DFT and SE. 

 
S/N 

Density Functional Theory (DFT) Semi-Empirical (SE) 
Actual values 

pEC50 
Predicted 

values 
Residual 
values 

Actual values 
pEC50 

Predicted 
values 

Residual 
values 

1 8.0000 7.8504 0.1496 8.0000 7.6360 0.3640 
2 7.1000 7.0987 0.0013 7.1000 7.1386 -0.0386 
3 6.8000 6.4319 0.3680 6.8000 6.8130 -0.0130 
4 6.6600 6.5102 0.1498 6.6600 6.2991 0.3609 
5 6.5500 6.0009 0.5491 6.6500 6.4638 0.1862 
6 6.1000 6.4722 -0.3722 6.1000 6.4554 -0.3554 
7 5.9600 5.8006 0.1594 5.9600 6.0871 -0.1271 
8 5.8900 6.3043 -0.4143 5.8900 5.6780 0.2118 
9 7.1500 6.6762 0.4738 7.1500 6.8399 0.3100 

10 5.1700 5.6075 -0.4375 5.1900 5.6462 -0.4562 
11 4.8900 5.0809 -0.1909 4.8900 4.7512 0.1388 
12 5.4900 5.2047 0.2853 5.4900 5.7988 -0.3088 
13 5.0000 5.1862 -0.1862 5.0000 4.9205 0.0795 
14 4.0000 4.2921 -0.2921 4.0000 4.1177 -0.1177 
15 8.8200 8.9274 -0.1074 8.8200 9.1818 -0.3618 
16 8.8300 9.1015 -0.2715 8.8300 8.7976 0.0324 
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17 9.3500 9.1085 0.2415 9.3500 9.1098 0.2402 
18 7.9400 8.6603 -0.7203 7.9400 8.5207 -0.5807 
19 7.0300 7.1834 -0.1534 7.0300 6.9865 0.0435 
20 8.7000 8.6930 0.0070 8.7000 8.6295 0.0705 
21 7.7700 7.8034 -0.0334 7.7700 7.5725 0.1975 
22 8.1800 8.1236 0.0564 8.1800 8.3289 -0.1490 
23 8.9300 8.5154 0.4146 8.9300 8.6621 0.2679 
24 7.8100 7.7868 0.0232 7.8100 7.8609 -0.0510 
25 6.5300 6.2299 0.3001 6.5300 6.4739 0.0560 

Table-10. Univariate analysis for the toxicity data 

 
Density Functional Theory (DFT) 

Semi-Empirical (SE) 

Parameter Value Parameter Value 
Number of sample points 25 Number of sample points 25 

Range 5.3500 Range 5.3500 
Maximum 9.3500 Maximum 9.3500 
Minimum 4 Minimum 4 

Mean 6.9860 Mean 6.9908 
Median 7.0300 Median 7.0300 

Variance 2.0054 Variance 1.9994 
Standard deviation 1.4453 Standard deviation 1.4432 

Mean absolute deviation 1.1834 Mean absolute deviation 1.1784 
Skewness -0.1804 Skewness -0.1876 
Kurtosis -1.0268 Kurtosis -1.0170 

 

 

Fig. 1: Linear relationship between actual toxicity (pEC50) and the predicted for DFT Approach. 
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Fig. 2: Linear relationship between Actual toxicity (pEC50) and the predicted for SE approach. 

 

Fig. 3. Plot of residual versus actual toxicity values DFT clculated descriptors 
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Fig.4. Plot of residuals versus actual toxicity values for SE calculated descriptors. 

DISCUSSION 

Among the ten QSAR models generated from both DFT and SE calculated molecular descriptors approaches, 
one model as presented in Table-4 was selected from both DFT and SE on the basis of various statistical 
parameters such as correlation coefficient squared (R2), cross-validation squared correlation coefficient (R2

cv), 
adjusted (R2), lack of fit (LOF), standard error of estimate (SEE), and F-value. These parameters are presented 
in Table-3. The statistical parameters obtained using semi-empirical calculated molecular descriptors are a little 
bit better than those obtained using DFT approach. The predictive power of the model is determined based of 
these statistical parameters which explained in detail in the methodology. (DFT: Friedman LOF = 0.5882, R2 = 
0.9517, R2

adj. = 0.9389, R2
cv = 0.9091, significance of regression F-value = 74.8019) and (Semi-empirical: 

Friedman LOF = 0.3878, R2 = 0.9650, R2
adj. = 0.9596, R2

cv = 0.95180, significance of regression F-value = 
115.0703). All of these parameters are in very good agreement with the standard reported in Table-2. Table-4 
shows the best model selected from both the methods, DFT and SE. The toxicity (Y) was used as independent 
variables and the descriptors (Xi) as dependent variables in the equations. Each model contains five descriptors 
as this agrees with the second criteria reported in Table-2. The correlation matrix in Table-5 and Table-6 show 
that the toxicities of these polyhalogenated dioxins are correlated with their descriptors for DFT and SE 
approaches respectively. The Variance Inflation factor (VIF) of all five descriptors were calculated using 
equation-8 and the corresponding VIF values of the five descriptors are presented in Table-7. As can be seen 
from this table, all the variables have VIF values of less than five, indicating that the obtained model from both 
the DFT and SE approaches has statistical significance, and the descriptors were found to be reasonably 
orthogonal. Table-9 shows the predicted toxicities in pEC50 of all the 25 molecules which in very good 
agreement with the experimental toxicities.Table-10 shows the statistical parameters of univariate analysis 
which describe the toxicity data. The most important data here are skewness and kurtosis. Skewness is the third 
moment of the distribution, which indicate symmetry of distribution. As skewness is positive, the distribution of 
the value within the column is skewed toward positive values. For a symmetry distribution, the skewness is 
close to zero. Kurtosis is the fourth moment of the distribution which indicates the profile of the column of data 
relative to normal distribution [41]. 
Contribution of descriptors  

This study reveals that the following descriptors are found to be responsible for producing toxicities of 
polychlorinated dioxins, (DFT: BCUTc-1h, VP-3, SssssGe, ETA_dAlpha_Shape and ETA_BetaP, then for 
Semi-empirical, we have EHOMO, SP-7, ETA_Shape_P, ETA_Etap_P and GRAV-4). As can be seen in Table-
4, Extended Topochemical Atom descriptor and Chipath descriptor appear to be found in both of the models 
generated using DFT and Semi-empirical calculated molecular descriptors. For DFT calculated descriptors, 
BCUTc-1h, VP-3, SssssGe and ETA_BetaP contribute positively in producing the toxicities of polyhologenated 
dioxins because of their positive coefficients in the model. This mean that increasing the values of these 
descriptors will produce high toxicities of these compounds and vice-versa. In the other hand, the descriptor, 
ETA_dAlpha_Shape which has negative coefficient in the model contributes negatively in producing the 
toxicities of these compounds. This indicates that decreasing the values of this descriptor will produce high 
toxicities of polyhalogenated dioxins. For the Semi-empirical calculated descriptors, the descriptors EHOMO, 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10

R
es

id
ua

ls

Actual toxicities (pEC50)

Hassan Samuel et al./ International Journal of Pharma Sciences and Research (IJPSR)

ISSN : 0975-9492 Vol 7 No 03 Mar 2016 123



SP-7, ETA_Shape_P and ETA_Etap_P which have positive coefficients in the models contribute positively in 
producing the toxicities of polyhalogenated dioxins. Increasing the values of these descriptors in 
polyhalogenated dioxins will produce higher toxicities [42]. The descriptor GRAV-4 has negative coefficient in 
the model and hence contributes negatively in producing the toxicities of these compounds. 
Fig.1 and Fig.2 show plot that describe the linear relationship between the calculated toxicity (pEC50) and the 
experimental toxicities of the 25 molecules of polyhalogenated dioxins for both the DFT and Semi-empirical 
calculated descriptors. Most of the compounds in the two figures are along the linear line of the plot. This 
indicates that, the calculated toxicities (pEC50) are in very good agreement with the experimental values. Fig.3 
and Fig.4 for DFT and Semi-empirical calculated descriptors respectively show the plot of the residual values 
versus experimental values of all the 25 molecules. The propagation of the residual values on both sides of zero 
indicates that no systematic error exists in the development of the models.  

CONCLUSION 

Genetic Function Approximation (GFA) technique was used to establish a correlation between (DFT and Semi-
empirical calculated molecular descriptors) and experimental toxicities of polyhalogenated dioxins. Each of 
DFT (BLYP/31G*) and Semi-empirical (AM1) calculated descriptors were used to generate ten QSAR models. 
The model with the highest statistical significant for both DFT (BLYP/31G*) and Semi-empirical (AM1) 
calculated descriptors was selected. These models were selected based on their statistical parameters and were 
used to predict the toxicities of polyhalogenated dioxins. The prediction of the toxicity efficiencies for both DFT 
(BLYP/31G*) and Semi-empirical (AM1) calculated descriptors matched with the experimental measurements. 
This work reveals that semi-empirical (AM1) calculated descriptors gives a little bit better predictions than DFT 
(BLYP/31G*) calculated molecular descriptors. 
For DFT-calculated molecular descriptors, the descriptors BCUTc-1h, VP-3, SssssGe, ETA_dAlpha_B, and 
ETA_BetaP were found to be the once responsible for producing toxicities of polyhalogenated dioxins. For 
Semi-empirical calculated descriptors, EHOMO, SP-7, ETA_Shape_P, ETA_EtaP_L and GRAV-4 were found 
to be the once responsible for toxicities of polyhalogeneted dioxins. All of these calculated molecular 
descriptors were aimed to encode some important information about the structural features of polyhalogenated 
dioxins which could influence the receptor binding affinity. 

Conflict of Interests 

The authors declare that there is no conflict of interests regarding the publication of this paper. 
REFERENCES 

[1] H Sadegh, M Yari, R Shahryari-ghoshkandi, S Ebrahimiasl, B Mazinejad, M Jalili and M  Chahardon. Dioxin: a review of its 
environmental risk. Pyrex Journal of research inEnviromental    studies. 2014, 1, 1-7. 

[2] Eichbaum,  K. Brinkmann,  M.,Buchinger,  S. Reifferscheid,  G.,  Hecker,  M., Giesy, J. P.,& Hollert, H. (2014). In vitro bioassays for 
detecting dioxin-like activity—Application potentials and limits of detection, a review. Science of the Total Environment, 487, 37-48. 

[3] Giesy, J. P., Ludwig, J. P., &Tillitt, D. E. (1994). Deformities in birds of the Great Lakes region. Environmental science & technology, 
28(3), 128A-135A. 

[4] Larsson, M., Hagberg, J., Rotander, A., van Bavel, B., &Engwall, M. (2013). Chemical  and  bioanalyticalcharacterisation  of  PAHs  
in  risk  assessment  of remediated  PAH-contaminated  soils. Environmental Science and Pollution Research, 20(12), 8511-8520. 

[5] Poland, A., & Knutson, J. C. (1982). 2, 3, 7, 8-Tetrachlorodibenzo-thorn-dioxin and related halogenated aromatic hydrocarbons:  
examination of the mechanism of toxicity. Annual review of pharmacology and toxicology, 22(1), 517-554. 

[6] Song, M., Jiang, Q., Xu, Y., Liu, H., Lam, P. K., O’Toole, D. K. & Jiang, G. (2006). AhR-active compounds in sediments of the Haihe 
and Dagu Rivers, China. Chemosphere, 63(7), 1222-1230.  

[7] Vries, M. D., Kwakkel, R. P., &Kijlstra, A. (2006). Dioxins in organic eggs: a review. NJAS-Wageningen Journal of Life Sciences, 
54(2), 207-221. 

[8] S. Khan, Q. Cao, A.J. Lin, and Y.G. Zhu, Concentrations and bioaccessibility  of  polycyclic aromatic  hydrocarbons  in wastewater-
irrigated  soil  using  in  vitro  gastrointestinal  test, Environ. Sci. Pollut. Res. 2008; 15: 344–353 

[9] Safe, S.  H. (1986).  Comparative  toxicology  and  mechanism  of  action  of polychlorinated  dibenzo-p-dioxins  and  
dibenzofurans.Annual review  of pharmacology and toxicology, 26(1), 371-399. 

[10] Whyte J.J, Jung R E, Schmitt CJ, Tillitt D.E. Ethoxyresorufin-O-deethylase (EROD)  activity  in  fish  as  a  biomarker  of  chemical  
exposure,  30.  London, ROYAUME-UNI: Informa Healthcare; 2000 

[11] Jouko Tuomisto, Terttu Vartianen and Jouni T. Tuomisto. Synopsis on Dioxins and PCBs. Nation Institution for health and welfare 
Mannerheimintie, 166, FIN-00300 Helsinki, Finland, 2011. 

[12] G.W Lucier, C.J Portier, M.A Gallo., Receptor and dose-response models for the effects of dioxins. Environ. Health perspect. 101 
1993 36-44.   

[13] D.W Nebert, A Puga, V Vasiliou. Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal-
transduction. Ann. N.Y. Acad. Sci. 685, 1993: 624-640.  

[14] US National Institute of Health, National Institute of Environmental Health Sciences (NIEHS). Dioxin Research at the National 
Institute of Environmental Health Sciences (NIEH). 2/28/2006).  

[15] Chovancova, J., Kocan, A., Jursa, S. PCDDs, PCDFs and dioxin-like PCBs in food of animal origin (Slovakia). Chemosphere, 2005; 
61:1305–1311.  

[16] Domingo, J.L., Bocio, A. Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: a literature review. Environ. 
Int. 2007; 33: 397–405. 

[17] Knight, D.J and Behenu, D. Alternative to animal testing in the safety evaluation of products, alternative to laboratory animals, 2002; 
30: 7. 

[18] Katritzky, A.R., Maran, U., V.S. Lobanov and krelson M., Vhem Y. Info. Computer 

Hassan Samuel et al./ International Journal of Pharma Sciences and Research (IJPSR)

ISSN : 0975-9492 Vol 7 No 03 Mar 2016 124



[19] Katritzky, A.R., Pentrukhin, R Tatham, D., Basak, S Benfenatim, E. Karelaon, M., and Maran U. Structurally diverse quantitative 
structure-property relationship correlations of technologically relevant physical properties. Journal of Chemical Information and 
Computer Sciences 2001; 40: 1–18. 

[20] D. Roggers, Some theory and examples of genetic function approximation with comparison to evolutionary techniques, in: J. Devillers 
(Ed.), Techniques,Genetic Algorithms in Molecular Modeling, Academic Press, London, 1996, pp.87–107 

[21] J.H. Holland, Adaption in Natural and Artificial Systems, University of MichiganPress, Ann Arbor, MI, 1975 
[22] D. Rogers, Data analysis using G/SPLINES, in: Advances in Neural Processing Systems 4, Morgan Kaufmann, San Mateo, CA, 1992 
[23] Tahar, L, Azeddine, A.; Rachid, H.; Majdouline, L.; Mohammed, B.; and. Binding Affinities (AhR) of Polychlorinated Biphenyls 

(PCBs), Dibenzo-p-dioxins (PCDDs) and Dibenzofurans (PCDFs) Study Combining DFT and QSAR Results. IJARCSSE 2014; 4: 
304-305.  

[24] Huifeng Wu, Fei Li, Jianmen Zhao, Xiali Liu, Linbao Zhang. Docking and –QSAR studies on the Ah receptor binding affinities of 
polychlorinated biphenyls (PCDDs), dibenzo-p-dioxins (PCDDs) and dibenzofuran (PCDFs). Environmental Toxicology and 
pharmacology 2011; 32: 478-485. 

[25] K Nandan, K ranjan, Md B Ahmad and B Sah. QSAR studies on polychlorinated aromatic compounds using topological descriptors. 
IJPSR, 2013, 4(7): 2691-2695. 

[26] Van Mourik, Tanja; Gdanitz, Robert J. (2002). "A critical note on density functional theory studies on rare-gas dimers". Journal of 
Chemical Physics 116 (22): 9620–9623. Bibcode, 2002JChPh.116.9620V. doi:10.1063/1.1476010 

[27] M Dewar. A semiempirical life. Columbus, OH: American Chemical Society. (1992)  ISBN 0-8412-1771-8. 
[28] Helguera AM, Combes RD, Gonzalez MP, Cordeiro MN (2008). Applications of 2D descriptors in drug design: a DRAGON tale. Curr 

Top Med Chem 8: 1628-55. 
[29] Minghu Song and Mathew Clark. Development and Evaluation of an in Silico Model for hERG Binding, J. Chem. Inf. Model., 2006, 

46 (1), 392-400. 
[30] Arodola Olayide, Adebimpe, Radha Charan Dash, Mahmoud E. S. Soliman. QSAR study on Diketo Acid and Carboxiamide 

Derivatives as Potent HIV-1 Integrase Inhibitor, letter in Drug & Discovery, 2014, 11, 000-000. 
[31] J. Zupan, J. Gasteiger, Neural Networks in Chemistry and Drug Design, second ed., Wiley-VCH, Weinheim, 1999. 
[32] H. Kubinyi, Quant. Struct.–Act. Relat. 13 (1994) 393 
[33]  R. Leardi, in: J. Devillers (Ed.), Genetic Algorithms in Molecular Modeling, Academic Press, London, 1996, p. 67. 
[34] Sofie Van Damme. Quantum Chemistry in QSAR, Quantum Chemical Descriptors, use, benefits and draw back. Thesis, department of 

inorganic and physical chemistry (2009). 
[35] R Kunal, P P Roy, S Paul and I Mitra. On two Novel parameters for validation of predictive QSAR models. Molecules, 2009, 14: 

1660-1701.  
[36] S Shapiro, S., Guggenhein, B., Inhibition of oral bacteria by phenolic compounds. Part 1. QSAR analysis using molecular 

connectivity. Quant. Struct.-Act. Relat. 1998, 17, 327-337. 
[37] Jaiswal, M., Khadikar, P.V., Scozzafava, A., Supuran, C.T. carbonic anhydrase inhibitors: the first QSAR on inhibition of tumor-

associated isoenzyme IX with aromatic and heterocyclic sulfonamides. Bioog. Med. Chem. Lett. 2004, 14, 3283-3290. 
[38]  Masand V. H, Jawarkar R. D, Patil K. N, Mahajad D. T, Hadda T. B, Kurhade G. H. COMFA analysis and toxicity risk assessment of 

coumarin analogues as Mao-A inhibitors: attempting better insight in drug design. Der Pharm. Lett., (2010a), vol. 2 (6): 350-357 
[39] Masand V. H, Jawarkar R. D, Patil K. N, Nazerruddin G. M, Bajaj S. O. Correlation potential of Wiener index vis-a- vis molecular 

refractivity, Antimalarial activity of xanthone derivatives. Org Chem Indian J. 2010b, vol. 6 (1): 30-38.  
[40] A K Pathak; A B Mundada; A Shrivastava, Pharmacia, 2011, 1, P, 57. 
[41] K F Khaled, Corrosion sci. 2011, 53, 3457-3465 
[42] R Navin; K J Sanmati, ChemTech, 2012; 4, 1350-1360 

Hassan Samuel et al./ International Journal of Pharma Sciences and Research (IJPSR)

ISSN : 0975-9492 Vol 7 No 03 Mar 2016 125


	Genetic Functional Algorithm Prediction ofToxicity of some Polychlorinated Dioxinsusing DFT and Semi-empirical CalculatedMolecular Descriptors
	Abstract
	Introduction
	QSAR METHODOLOGY
	RESULTS AND DISCUSSION
	DISCUSSION
	CONCLUSION
	Conflict of Interests
	REFERENCES




