# FTIR SPECTROSCOPIC METHOD FOR QUANTITATIVE ANALYSIS OF CILNIDIPINE IN TABLET DOSAGE FORM

Ashish Patel\*<sup>1</sup>, Arti Panchal<sup>1</sup>, Viral Patel<sup>1</sup>, Akhil Nagar<sup>1</sup>

Department of Pharmaceutical Chemistry, Parul institute of Pharmacy<sup>1, 4.5,</sup>Vadodara-391760, Gujarat, India.

E-mail: patel\_ashish2388@yahoo.com
Ph: 02668-260300/260307,Fax: 02668-260201

#### **ABSTRACT**

A Fourier transform infrared (FT-IR) spectrometric method was developed for the rapid and direct measurement of Cilnidipine in pharmaceutical drugs. Cilnidipine is newly discovered and very effective antihypertensive drug. Cilnidipine can be determined by various methods and now we are adding a new one that uses a Fourier transform infrared spectrophotometric technique. The method involves the measurement of absorbance of carbonyl group (C=O) peak at 1697 cm<sup>-1</sup>. The proposed method was validated for pharmaceuticals in tablet form and %RSD was found to be less than two with recovery levels 99.8-102.5 and 99.8- 101.4 as per absorbance and peak area respectively.

**Keywords:** FT-IR, Cilnidipine, Carbonyl peak, Tablet formulation, FTIR.

### INTRODUCTION

Cilnidipine(CIL)1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylic acid-2-methoxyethyl(2E)-3-phenyl-propenyl ester is a novel and unique dihydropyridine calcium channel blocker that possesses a slow onset, long-lasting vasodilating effect. CILis used in the treatment of hypertension<sup>[1]</sup> .CIL shows first pass mechanism. CILis used in combination with others drugs like Telmisartan(TEL), Olmesartan(OLME).

The structural formula for CIL is shown in following way. [2]

$$H_3CO$$
 $H_3C$ 
 $H_3C$ 
 $H_3C$ 
 $H_3C$ 
 $H_3C$ 
 $H_3C$ 

**1, 4-Dihydropyridine** (DHP), an important class of calcium antagonist, inhibits the influx of extracellular Ca<sup>+2</sup>through L-type voltage-dependent calcium channels. **Cilnidipine** is a calcium channel blocker. Cilnidipine is the novel calcium antagonist accompanied with L-type and N-type calcium channel blocking function. Compared with other calcium antagonists, cilnidipine can act on the N-type calcium-channel that existing sympathetic nerve end besides acting on L-type calcium-channel that similar to most of the calcium antagonists. We can develop the new method for the quantitation of the Cilnidipine and Felodipine.FTIR can be used for the Quantitation purpose for the Cilnidipine. Infrared spectroscopy is a standard analytical method of provides the images of vibration of atoms of compound. Therefore it is also referred to as vibrational spectroscopy. IR spectrum is obtained by passing infrared radiation through the sample and determining what fraction of the incident radiation is absorbed and transmitted at a particular frequency.Literature survey reveals that the analytical method reported for quantitative estimation of the 1,4- Dihydropyridines are HPLC<sup>[3-5]</sup>, UV<sup>[6]</sup>, HPTLC<sup>[7]</sup>, HPLC-MS<sup>[8]</sup>, stability indicating HPLC method<sup>[10]</sup> etc. Comparative study was not done between 2 analytical methods for these drugs. This revealed that no analytical method is reported for the Quantitative estimation of the 1,4- Dihydropyridines by FTIR except Amlodipine.So, the development and validation of the 1,4- Dihydropyridines by FTIR is a novel, faster, easier, accurate, cheap, less time consuming method.

ISSN: 0975-9492 Vol. 6 No.7 Jul 2015 1033

#### **MATERIALS AND METHODS:**

## **Chemicalsandreagents:**

The reference samples of Cilnidipine were provided by pure chem limited Ankleshvar. Tablet used for analysis was Cillacar(Label claim: 10 mg) is procured from the local market. Potassium bromide used was IR Grade. Chloroform used is of Analytical grade.

## INSTRUMENTS AND FTIR CONDITION:

## **Instrument:**

All spectral and absorbance measurements were made on I.R spectrophotometer (Bruker Optics alpha-T)

#### **FTIR condition:**

| PARAMETERS               | OPTIMISED CONDITIONS |
|--------------------------|----------------------|
| Method of making pellets | Direct mixing method |
| Mode of measurement      | Absorbance mode      |
| Final wt. of pellet      | 150 mg               |
| Peak selection           | 1697cm <sup>-1</sup> |
| No. of scans             | 16 scans             |

## Preparation of standard stock solution for FTIR

To the accurately weighed 30 mg of the drug, 300 mg of dried KBr was mixed with the aid of geometric mixing. This forms the stock solution of  $100\mu g/mg$ . Mixing should be properly done so that each pellet formed contains uniformly distributed drug. This procedure was performed for all the three Dihydropyridines.

# Preparation of standard working solution for FTIR

From the stock (100  $\mu$ g/mg), 7.5, 15, 22.5, 30, 37.5, mg was weighed accurately and diluted to 150 mg with dried KBr to make the final concentration of 5, 10, 15, 20, 25 $\mu$ g/mg respectively. Mixing of the drug and dried KBr was done properly for uniform mixing.

## RESULTS AND DISCUSSION:

## **Linearity and Range**

The calibration curve was plotted over a concentration range of 5-25  $\mu$ g/mg (Cilnidipine), Calibration curve was constructed by plotting absorbance and peak area of the C=O peak near to 1698 cm<sup>-1</sup> against concentration and all the regression parameters were calculated. Then the spectrums of all individual concentration were overlaid to demonstrate the linearity. Each response was an average of five determinations. The limit of detection (LOD) is the lowest concentration of an analyte in a sample that can be detected and the limit of quantification (LOQ) is the lowest concentration of an analyte in a sample that can be quantitated. Both LOD and LOQ were experimentally verified and calculated using the following equation.

LOD = 3.3 (SD/Slope)LOQ = 10 (SD/Slope)

Table 1: LOD and LOQ data of Cilnidipine by FT-IR Method

| PARAMETER                                         | CILNII     | DIPINE    |
|---------------------------------------------------|------------|-----------|
| _                                                 | Absorbance | Peak area |
| S.D. of the Y- intercept of the calibration curve | 0.0085     | 0.061     |
| Mean slope of the 3 calibration curve             | 0.1219     | 3.414     |
| $LOD(\mu g/mg)$                                   | 0.22       | 0.050     |
| $LOQ(\mu g/mg)$                                   | 0.60       | 0.17      |

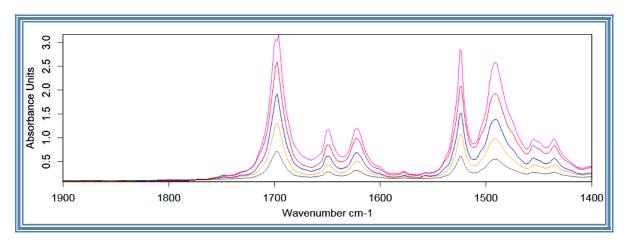



Figure 1: Overzoom Spectrum of Cilnidipine (FT-IR Method)

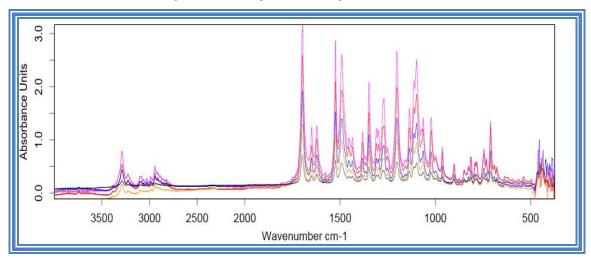



Figure 2: Overlay Spectrum of Cilnidipine (FT-IR Method)

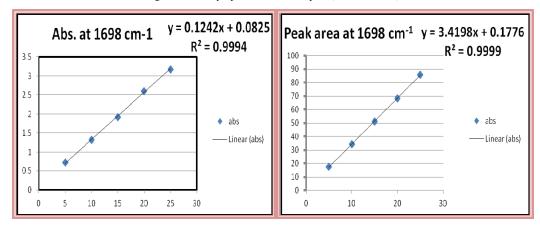



Figure: 3 Calibration Curve of Cilnidipine for Absorbance and Peak are

Table 2: IR Linearity Data of Cilnidipine for 150mg dilution with KBr

| SR<br>NO | CONC.<br>(μg/mg) | ABSORBANCE<br>(1698CM <sup>-1</sup> ) n=3 | Mean ± SD           | PEAK AREA<br>(1698CM <sup>-1</sup> )<br>n=3 | Mean ± SD         |
|----------|------------------|-------------------------------------------|---------------------|---------------------------------------------|-------------------|
| 1        | 5                | 0.718                                     | $0.719 \pm 0.0044$  | 17.48                                       | 17.50 ±0.0047     |
| 2        | 10               | 1.312                                     | $1.31 \pm 0.0122$   | 35.30                                       | $34.22 \pm 0.218$ |
| 3        | 15               | 1.920                                     | $1.923 \pm 0.00424$ | 51.25                                       | 51.26 ±0.023      |
| 4        | 20               | 2.59                                      | $2.536 \pm 0.026$   | 68.39                                       | $68.49 \pm 0.126$ |
| 5        | 25               | 3.180                                     | $3.156 \pm 0.0176$  | 85.94                                       | 85.50±0.333       |

#### **Precision**

To determine whether the proposed method is precise or not, it was confirmed by carrying out repeatability, Interday study and different analyst study for two Dihydropyridines. KBr pellets of different concentrations (lower, middle and higher of linearity range) were prepared and the absorbance & the peak area were recorded. Repeatability was checked by measuring the spectrum of any one concentration from the linearity range six times and calculating the %RSD. Then for interday& different analyst study, three different concentrations were measured on three days consecutive and by two different analyst respectively and calculating %RSD.

Table: 3 Repeatability data of 1, 4 - Dihydropyridines by FT-IR Method

| SR NO | Cilnidipine           |           |  |  |  |
|-------|-----------------------|-----------|--|--|--|
|       | ABSORBANCE (10 µg/mg) | PEAK AREA |  |  |  |
| 1     | 1.312                 | 35.483    |  |  |  |
| 2     | 1.318                 | 35.493    |  |  |  |
| 3     | 1.312                 | 35.483    |  |  |  |
| 4     | 1.316                 | 35.491    |  |  |  |
| 5     | 1.328                 | 35.400    |  |  |  |
| 6     | 1.312                 | 35.479    |  |  |  |
| MEAN  | 1.314                 | 35.485    |  |  |  |
| RSD   | 0.0035                | 0.37      |  |  |  |
| %RSD  | 0.273                 | 1.02      |  |  |  |

Table: 4 Inter-day precision data of Cilnidipine by FT-IR Method

| CONC<br>µg/mg) | DAY-1                      | DAY-2                                                      | DAY-3                                                                                      | MEAN                                                                                                                       | SD                                                                                                                                                         | %RSD                                                                                                                                                                                           |
|----------------|----------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10             | 1.318                      | 1.320                                                      | 1.322                                                                                      | 1.320                                                                                                                      | 0.0063                                                                                                                                                     | 0.477                                                                                                                                                                                          |
| 15             | 1.920                      | 1.921                                                      | 1.923                                                                                      | 1.920                                                                                                                      | 0.00124                                                                                                                                                    | 0.06                                                                                                                                                                                           |
| 20             | 2.599                      | 2.602                                                      | 2.593                                                                                      | 2.593                                                                                                                      | 0.00339                                                                                                                                                    | 0.127                                                                                                                                                                                          |
| 10             | 35.306                     | 35.315                                                     | 35.493                                                                                     | 35.371                                                                                                                     | 0.0861                                                                                                                                                     | 0.243                                                                                                                                                                                          |
| 15             | 51.257                     | 51.309                                                     | 51.301                                                                                     | 51.280                                                                                                                     | 0.022                                                                                                                                                      | 0.042                                                                                                                                                                                          |
| 20             | 69.398                     | 69.396                                                     | 69.381                                                                                     | 79.39                                                                                                                      | 0.040                                                                                                                                                      | 0.05                                                                                                                                                                                           |
|                | μg/mg)  10  15  20  10  15 | μg/mg)  10 1.318  15 1.920  20 2.599  10 35.306  15 51.257 | μg/mg)  10 1.318 1.320  15 1.920 1.921  20 2.599 2.602  10 35.306 35.315  15 51.257 51.309 | μg/mg)  10 1.318 1.320 1.322  15 1.920 1.921 1.923  20 2.599 2.602 2.593  10 35.306 35.315 35.493  15 51.257 51.309 51.301 | μg/mg)  10 1.318 1.320 1.322 1.320  15 1.920 1.921 1.923 1.920  20 2.599 2.602 2.593 2.593  10 35.306 35.315 35.493 35.371  15 51.257 51.309 51.301 51.280 | μg/mg)  10 1.318 1.320 1.322 1.320 0.0063  15 1.920 1.921 1.923 1.920 0.00124  20 2.599 2.602 2.593 2.593 0.00339  10 35.306 35.315 35.493 35.371 0.0861  15 51.257 51.309 51.301 51.280 0.022 |

Table: 5 Different Analyst Study data of Cilnidipine by FT-IR Method

| PARAMETER  | CON<br>(µg/mg) | ANALYST 1 | ANALYST 2 | MEAN   | SD     | %RSD  |
|------------|----------------|-----------|-----------|--------|--------|-------|
| Absorbance | 10             | 1.318     | 1.323     | 1.320  | 0.0025 | 0.189 |
|            | 15             | 1.920     | 1.916     | 1.916  | 0.0020 | 0.104 |
|            | 20             | 2.599     | 2.592     | 2.590  | 0.003  | 0.11  |
| Peak Area  | 10             | 35.306    | 35.483    | 35.39  | 0.09   | 0.254 |
|            | 15             | 51.257    | 51.309    | 51.283 | 0.026  | 0.050 |
|            | 20             | 69.398    | 69.396    | 69.39  | 0.015  | 0.02  |

# **Accuracy**

Accuracy study was carried out by calculating % Recovery of the Dihydropyridine by standard addition method. Known amounts of standard mixture of Cilnidipine (2, 5 and 8  $\mu g/mg$ ), were added respectively to a prequantified test mixture of Cilnidipine (5  $\mu g/mg$ ). The pellet of varying concentration prepared was measured thrice and the % recovery was calculated by measuring absorbance & peak areas and fitting these values into the regression equation of the calibration curve.

Table: 6 Accuracy data of Cilnidipine by FT-IR Method

| Parameter  | % of<br>nominal<br>amt. | Actual amt. | Spiked amt. | Total amt. | Amt. found (n=3) | recovery<br>(n=3) % |
|------------|-------------------------|-------------|-------------|------------|------------------|---------------------|
| Absorbance | 80                      | 5           | 4           | 9          | 9.02             | 100.22              |
|            | 100                     |             | 5           | 10         | 9.98             | 99.8                |
|            | 120                     |             | 6           | 11         | 11.20            | 102.5               |
| Peak Area  | 80                      | 5           | 4           | 9          | 29.314           | 99.89               |
|            | 100                     |             | 5           | 10         | 35.396           | 101.2               |
|            | 120                     |             | 6           | 11         | 40.126           | 101.4               |

#### **Robustness**

Robustness study was performed by varying few parameters deliberately. In FT-IR method, the parameters that were varied were the techniques that are used for recording the IR spectra. Three concentrations of each 1, 4-Dihydropyridine was measured and replicated thrice by KBr disc technique, liquid cell technique and lastly by keeping the air conditioner off.

Table 7: Robustness data of Cilnidipine by FT-IR Method

| Con(µg/<br>mg) | KBr<br>technique        | Liquid cell<br>technique                                                                                           | Keeping A.C off                                                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                                                                                                                                             | S.D                                                                                                                                                                                                                                                                                                                                                                                                                      | % RSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10             | 1.312                   | 1.390                                                                                                              | 1.310                                                                                                                                                                                                                                                    | 1.335                                                                                                                                                                                                                                                                                                                                            | 0.0037                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15             | 1.920                   | 1.929                                                                                                              | 1.922                                                                                                                                                                                                                                                    | 1.923                                                                                                                                                                                                                                                                                                                                            | 0.0038                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20             | 2.599                   | 2.593                                                                                                              | 2.600                                                                                                                                                                                                                                                    | 2.597                                                                                                                                                                                                                                                                                                                                            | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10             | 35.306                  | 35.310                                                                                                             | 35.306                                                                                                                                                                                                                                                   | 35.307                                                                                                                                                                                                                                                                                                                                           | 0.0018                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15             | 51.257                  | 51.262                                                                                                             | 51.260                                                                                                                                                                                                                                                   | 51.259                                                                                                                                                                                                                                                                                                                                           | 0.0020                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20             | 69.398                  | 69.400                                                                                                             | 69.396                                                                                                                                                                                                                                                   | 69.398                                                                                                                                                                                                                                                                                                                                           | 0.0047                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | mg)  10  15  20  10  15 | mg)     technique       10     1.312       15     1.920       20     2.599       10     35.306       15     51.257 | mg)         technique         technique           10         1.312         1.390           15         1.920         1.929           20         2.599         2.593           10         35.306         35.310           15         51.257         51.262 | mg)         technique         technique         A.C off           10         1.312         1.390         1.310           15         1.920         1.929         1.922           20         2.599         2.593         2.600           10         35.306         35.310         35.306           15         51.257         51.262         51.260 | mg)         technique         technique         A.C off           10         1.312         1.390         1.310         1.335           15         1.920         1.929         1.922         1.923           20         2.599         2.593         2.600         2.597           10         35.306         35.310         35.306         35.307           15         51.257         51.262         51.260         51.259 | mg)         technique         technique         A.C off           10         1.312         1.390         1.310         1.335         0.0037           15         1.920         1.929         1.922         1.923         0.0038           20         2.599         2.593         2.600         2.597         0.003           10         35.306         35.310         35.306         35.307         0.0018           15         51.257         51.262         51.260         51.259         0.0020 |

## ANALYSIS OF THE MARKETED FORMULATION BY FT-IR SPECTROSCOPY

10 tablets of Cilnidipine (CILACAR-10 mg) were triturated after taking their average weight. The tablet powder equivalent to 1 tablet was transferred to the volumetric flask and dissolved in chloroform. The resulting solution (100µg/ml) was sonicated for 10 min and supernatant was filtered through whatman filter paper no. 41. Filtrate was evaporated and from the residue obtained 1 mg was accurately weighed, made up to 100 mg with dried KBr and triturated well. Then the dilution is further performed from this stock mixture to prepare the pellet of desired concentration. Thereafter the concentration of the sample was found from regression equation of calibration curve of respective 1, 4-dihydropyridines.

Table 8: Analysis of Marketed Formulation by FT-IR Method

| Formulation | Amount of Drug<br>taken (µg/mg) | Amt. found ( $\mu$ g/ml) (n=6) |              | %label claim |           |
|-------------|---------------------------------|--------------------------------|--------------|--------------|-----------|
|             |                                 | Absorbance                     | Peak<br>Area | Absorbance   | Peak Area |
| Cillacar    | 10                              | 9.986                          | 9.95         | 99.86%       | 99.66%    |

# **CONLUSION:**

In the present investigation we have studied the possibility of quantification of Cilnidipine in single dosage formulation using FT-IR. From the data it is clear that FT-IR is capable of direct determination of Cilnidipine in the above formulations. The proposed FT-IR method was found to be simple, rapid, and reproducible and less time consuming compared to other analytical methods.

## **ACKNOWLEDGEMENT:**

We are thankful to the Department of Quality Assurance and Pharmaceutical Chemistry, Parul Institute of Pharmacy, Vadodara, for providing the instrumentation and laboratory facilities, also thankful to Mr. Ashish Patel for providing me the knowledge.

#### REFERENCE:

- [1] Available from: http://en.wikipedia.org/wiki/Cilnidipine
- [2] Available from: Drugbank, Cilnidipine, September-2014, http://www.drugbank.ca/drugs/DB00401
- [3] Pawar P, Gandhi SV, Deshpande PB, Simultaneous RP-HPLC estimation of cilnidipine and telmisartan in combined tablet dosage form. Der Chemica Sinica, 2013, 4, 6-10.
- [4] Vahora S, Mehta F, Chhalotiya U, Shah D: Dual Wavelength Spectrophotometric Method for Estimation of Cilnidipine and Telmisartan in Their Combined Dosage Form. Research and Reviews: Journal of Pharmaceutical Analysis, 2014;3(2):22–29
- [5] Siddiqui MI, Srinivas M, Simultaneous estimation of telmisartan and cilnidipine in bulk and in tablet formulation using RP-HPLC: An Int. J.of Adv. In Pharm. Sci. 2014, 5, 2142-2148.
- [6] Sidhdhapara M: Development and Validation Of RP-HPLC Method For Simultaneous Estimation Of Cilnidipine and OlmesartanMedoxomil In Their Combined Tablet Dosage Form. Int. J Pharm Bio Sci., 2014, 4, 157–60.
- [7] Mohammed M. Safhi, Spectrophotometric Method for the Oriental Journal Of Chemistry, 2013, 29, 131–34. Estimation of Cilnidipine in Bulk and Pharmaceutical Dosage forms.
- [8] Pawar P, Deshpande P, Gandhi S, Bhavnani V: High Performance Thin Layer Chromatographic determination of Cilnidipine and Telmisartan in combined tablet dosage form. International Research Journal of Pharmacy, 2012;3(6):219–22.
- [9] Kyeong-Ryoon Lee, Yoon-JeeChae, Jong-Hwa Lee, Dae-Duk Kim, Saeho Chong, Chang-Koo Shim, and Suk-Jae Chung. Quantification of Cilnidipine in human plasma by liquid Chromatography-mass spectrometry. Journal of Liquid Chromatography & Related Technologies, 2012; 35:308–20.
- [10] Kadam A, Dr. (Mrs.) Hamrapurkar P: Development and Validation of Stability Indicating RP-HPLC Method for the Estimation of Cilnidipine in Bulk and Pharmaceutical Dosage Form. Int. J. Pharm. Sci. Rev. Res., 30(1), 2015,177-18.