Development and Validation of First Order Derivative Spectrophotometric method for simultaneous estimation of Nifedipine and Metoprolol Succinate in Synthetic Mixture

Sojitra Rajanit^{1*}, Virani Paras¹, HashumatiRaj

^{1*} Department of quality assurance, shreedhanvantry Pharmacy College, Kim, Surat.

ABSTRACT

The present manuscript describe simple, sensitive, rapid, accurate, precise and economical first derivative spectrophotometric method for the simultaneous determination of Nifedipine (NIF)and Metoprolol Succinate (MET)in synthetic mixture. The derivative spectrophotometric method was based on the determination of both the drugs at their respective zero crossing point (ZCP). The first order derivative spectra was obtained in methanol and the determinations were made at 283.80 nm (ZCP of nifedipine) for metoprolol succinate and 242.60 nm (ZCP of metoprolol succinate) for nifedipine. The linearity was obtained in the concentration range of succinate 5-25 μ g/ml for nifedipine and 25-125 μ g/ml for metoprolol. The mean recovery was 99.64 and 99.41 for Nifedipine and Metoprolol succinate, respectively. The method was found to be simple, sensitive, accurate and precise and was applicable for the simultaneous determination of Nifedipine and Metoprolol succinate in synthetic mixture. The results of analysis have been validated statistically and by recovery studies.

KEYWORDS: Spectroscopic method, First Order Derivativemethod, Nifedipine and MetoprololSuccinate.

1. INTRODUCTION

The aim of the present work was to develop a new simple, rapid, selective method for the simultaneous determination of components having overlapping spectra in binary mixtures, having the advantages of minimal data processing and a wider range of applications over the previously mentioned methods. To prove the ability of the newly described method in resolving the overlapping spectral data and simultaneous determination of each component, it was applied for the analysis of a mixture of Nifedipine (NIF) and NIFprololSuccinate (MET) formulated together in the form of synthetic mixture widely used for the treatment of heart related problems accompanying several hypertension.

Nifedipine is dimethyl 1, 4-dihydro-2, 6- dimethyl-4-(2-nitrophenyl)pyridine-3,5- dicarboxylate. [1][2] It is a calcium channel blocker, one of the most widely used coronary vasodilators. [3][4] Nifedipine acts by blocking the inward movement of calcium by binding to L-type calcium channels in the heart and smooth muscle of the coronary and peripheral arteriolar vasculature. This causes vascular smooth muscle to relax, dilating mainly arterioles. [5][6] Metoprolol succinate is chemically (*RS*)-1-(Isopropylamino)-3-[4-(2 methoxyethyl)phenoxy]propan-2-ol succinate [1], is a cardio selective β-blocker, used in the treatment of hypertension, angina pectoris, arrhythmia, myocardial infraction and heart failure [2]. It is official in IP[3], BP[4] and USP[5]. Describe potentiometry method for its estimation. Literature survey reveals UV spectrophotometric method [6], RP-HPLC method [7], validated HPLC method for estimation of metoprolol in human plasma [8], simultaneous spectrophotometric method with other drug [9] and RP-HPLC method with other drug [10] in pharmaceutical dosage forms as well as in biological fluids.

1.1. THEORY

We can find out concentration of both the drug from combination mixture using the linearity equation. In this method using the absorbance of both the drug and mixture at their wavelength and put this value in following equation and we can find out the concentration of drugs present in combination.

Where,

Y = Absorbance

m = Slop

x = Concentration

c = Intercept

2. MATERIAL AND METHOD

2.1. Apparatus

AdoublebeamUV/Visiblespectrophotometer(Shimadzumodel2450,Japan) with spectralwidth of 2nm, 1 cm quartzcells was used to measureabsorbance of allthe solutions. Spectrawere automatically obtained by UV-Probe system software.

2.2. Reference samples

NIF and MET reference standard are kindly supply by J.B. Chemicals, Ankleshwar and CTX Life Science, Surat as a gift sample respectively.

2.3. MATERIALS AND REAGENTS

Methanol AR grade(RANKEM)

2.4. STANDARD SOLUTIONS

2.4.1. Standard solutionofnifedipine (NIF)

Accuratelyweighed quantity of NIF10mg was transferred to 100mlvolumetric flask, dissolved and diluted uptomark with Methanol to give a stock solution having strength $100\mu \, \mathrm{g/ml}$.

2.4.2. Standard solutionofmetoprolol succinate (MET)

Accuratelyweighedquantity of MET 100 mgw astransferred into 100 mlvolumetric flask, dissolved and diluted up to mark with Methanol to give a stock solution having strength 1000 µg/ml.

2.4.3. Preparation of standard mixture

Pipette out accurately 0.5 ml of NIF stock solution ($100\mu g/ml$), 0.25 ml of MET stock solution ($1000\mu g/ml$) in 10 ml volumetric flask and make up the volume up to the mark with Methanol. It gives solution containing NIF 5 $\mu g/ml$, MET 25 $\mu g/ml$.

2.4.4. Test sample preparation

Dissolve synthetic mixtureformulation in 100 ml volumetric flask containing 100 ml methanol. Take 1 ml tablet sample solution in 10 ml volumetric flask and make up volume up to mark with methanol.

3. METHODOLOGY

The standard solutions of NIF ($10 \mu g/ml$) and MET ($50 \mu g/ml$) were scanned separately in the UV range of 200-400nm. The zero-order spectra thus obtained was then processed obtain first-derivative spectra. Data were recorded at aninterval of 1 nm. The two spectra were overlain and itappeared that NIF showed zero crossing at 283.80 nm, whileMET showed zero crossing at 242.60 nm. At the zero crossingpoint (ZCP) of NIF (283.80 nm), MET showed a first-derivative absorbance, whereas at the ZCP of MET (242.60nm), NIF showed a first-derivative absorbance. Hence 242.60 and 283.80 nm was selected as analytical wavelengths fordetermination of NIF and MET, respectively. These twowavelengths can be employed for the determination of NIF without any interference from the other drug intheir synthetic mixture formulation.

4. RESULTAND DISCUSSION

4.1. Selection ofwavelengthand method development fordetermination of Nifedipine and Metoprolol Succinate

The standard solution of NIF and MET were scanned separately between 200-400 nm, and zero-order spectra were not showed overlapping peaks. (figure 4.1.1)

Thus obtained spectrawere then processed to obtain first-derivativespectra.

Firstorderderivative spectrum for NIF showed four zero crossing points: 283.80 nm. Thewavelengthselected for estimation of NIF was 283.80 nm because it showed $\rm r^2>0.998$ at this wavelength in mixture. (Figure 4.1.2)

First or derderivative spectrum for MET showed two zero crossing points: 242.60 nm.Thewavelengthselected forestimationofMET was242.60 nmbecauseitshowedr²>0.998 at this wavelength in mixture (Figure 4.1.2)

5. VALIDATION PARAMETERS

5.1. Linearity and Range

The First-derivative spectra (fig. 5.1.1) show edlinear absorbance at 283.80 nm (ZCP of MET) for NIF (5-25 μ g/ml) and 242.60 nm (ZCP of NIF) for MET (25-125 μ g/ml) with correlation coefficient (r²) of 0.9980 and 0.9989 for NIF and MET, respectively.

Thismethodobeyedbeer's law in the concentration range 5-25 $\mu g/m l$ and 25-125 $\mu g/m l$ for NIF and MET, respectively. (Table 5.1.1)

Correlationcoefficient(r²)for mcalibrationcurve of NIF and MET was found to be 0.9980 and 0.9989,respectively(figure 5.1.2 and 5.1.3)

Theregression line equation for NIF and MET are as following,

y = -0.0006x - 0.0101 for NIF _____(1)

y = -0.002x + 0.002 for MET _____(2)

From the combination solution of NIF and MET the dilution were made in ratio of the combination of the com

1:5

and absorbance were recorded (Table 5.1.1) and correlation coefficient (r^2) of 0.9980 (figure 5.1.2) and 0.9989 (figure 5.1.3) for NIF and MET, respectively.

5.2. Precision

I. Intraday precision

Thedataforintradayprecisionforcombinedstandardsolution of NIF and MET is presented in Table 5.2.1

The%R.S.D wasfound to be 0.457-0.687% for NIF and 0.630-0.863% for MET.

These%RSDvaluewasfoundtobelessthan±1.0indicatedthatthemethod is precise.

II. Interdayprecision

Thedataforinterdayprecisionforcombinedstandardsolution of NIF and MET is presented in Table 5.2.2

The% R.S.D was found to be 0.653-0.896% for NIF and 0.712-0.890% for MET.

These%RSDvaluewasfoundtobelessthan±1.0indicatedthatthemethod is precise.

5.3. Accuracy

Accuracyofthemethodwasdeterminedbyrecoverystudyfromsynthetic mixture at threelevels (80%, 100%, and 120%) of standard addition.

The% recoveryvalues are tabulated in Table 5.3.1 and 5.3.2

 $Percentage recovery for NIF and MET by this method was found in the range of 98\ to\ 102\ \%\ and 99\ to\ 101\ \%, respectively,$

The value of RSD within the limit indicated that the method is accurate and percentage recovery shows that there is no interference from the excipients.

5.4. Limit of detection and quantitation

 $The LOD for NIF and MET was conformed to be 0.032 \mu g/ml and 0.831 \mu g/ml, respectively.$

TheLOQforNIFandMETwasconformedtobe0.098µg/mland2.520µg/m, respectively.

TheobtainedLODandLOQresults are presented in Table 5.4.1

5.5. Robustness and Ruggedness

The obtained Ruggedness and Robustness results are presented in table 5.5.1

The% R.S.D was found to be 0.280-0.857 % for NIF and 0.291-0.890 % for MET.

These%RSDvaluewasfoundtobelessthan±1.0indicatedthatthemethod is precise.

No significant changes in the spectrums were observed, proving that the developed method is ruggedand robust.

5.6. Application of the proposed method for analysis of NIF and MET in synthetic mixture

A first or derderivative spectrum of the sample solution containing 4 µg/ml of NIF and 20 µg/mlofMET was recorded and the absorbance at 283.80 nm and 242.60 nm were noted for estimation of NIF and MET, respectively.

The concentration of NIF and MET in mixture was determined using the corresponding calibration graph.

Theresultsfromtheanalysis of synthetic mixturecontaining Nifedipine (4 mg)and Metoprolol Succinate (20 mg) in combination are presented in Tablein 5.6.1

The percent as say shows that the reisnointerference from excipients and the proposed method can successfully applied to an alysis of commercial formulation containing NIF and MET. The % assay values are tabulated in Table 5.6.1

6. CONCLUSION

Based on the results, obtained from the analysis of described method, it can be concluded that the method has linear response in the range of 5-25 $\mu g/ml$ and 25-125 $\mu g/ml$ for NIF and MET, respectively with co-efficient of correlation, (r2)=0.9980 and (r2) = 0.9989 for NIF and MET, respectively. The result of the analysis of pharmaceutical formulation by the proposed method is highly reproducible and reliable and it is in good agreement with the label claim of the drug. The additives usually present in the pharmaceutical formulation of the assayed sample did not interfere with determination of NIF and MET. The method can be used for the routine analysis of the NIF and MET in synthetic mixture form without any interference of excipients.

7. ACKNOWLEDGEMENTS

Declared none.

ISSN: 0975-9492 Vol. 6 No.2 Feb 2015 267

8. REFERENCE

- [1] The European Pharmacopoeia, 7th Edn; Published by the European Directorate for the Quality of Medicines & Health Care, 2011, Vol. II, pp 2495-2496.
- [2] Martindale, Royal Pharmaceutical Society of Great Britain, 34thEdn, The Pharmaceutical press, London, 2005, pp 966.
- [3] Lippincott Williams and Wilkins, Foye's principles of medicinal chemistry, 5th Edn, 351-west Camden street, 2007,pp 552.
- [4] Brunton L, Parker K and Buxton L, Goodman and Gillman's manual of pharmacology and therapeutics, 3rd Edn; the Mcgraw Hill compnies publication, New York, 2007, pp 856.
- [5] Remington, The Science & Practice of Pharmacy, 21st Edn, Vol. II, pp 1366.
- [6] Lippincott's Illustrated Reviews, Lippincott Williams & Wilkins, Pharmacology, 5th Edn, pp 236.
- [7] Maryadele, J. O'Neil., Eds., In; The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals, 14thEdn; Merck & Co., Inc., Whitehouse Station. NJ, 2006,6151, 1060.
- [8] Sweetman, S.C., Martindale: The Complete DrugReference, 35thEdn; London, UK, Pharmaceutical Press, 2007, pp 1201.
- [9] Indian Pharmacopeia, Vol. II. New Delhi, The Controller Publication, Govt of India. 2010, pp 1681.
- [10] British Pharmacopoeia, Vol II. London, The BritishPharmacopoeia Commission; 2010, pp 1419.
- [11] The United State Pharmacopeia. USP28-NF23. RockvilleMD: United State Pharmacopeial Convention, Inc; 2005, pp 1279.
- [12] Sawant SD, Ghante MR, Deshpande AS, Shah B. Threesimple spectrometric methods for metoprolol succinate tablet dosage form. International Journal of Chemicaland Analytical Science 2010, 1(9), pp 217-218.
- [13] Vuzic Z, Radulovic D, Zivanovic D. Spectrophotometricinvestigation of metoprolol- benzyl orange and itsapplication to the assay in pharmaceutical dosage forms. Elsevier, Lausanne, SUISSE 1995, 50(4), pp 281-284.
- [14] Aqil M, Ali A, Ahad A, Sultana Y, Najmi AK, Saha N. Avalidated HPLC method for estimation of metoprolol inhuman plasma. ACTA Chromatographica2007, 19, pp 130-140.
- [15] Rao MMP, Rahaman SA, Prasad YR, Reddy PG. RP-HPLC method of simultaneous estimation of amlodipine besylate and metoprolol in combined dosage form. International Journal of Pharmaceutical Research and Development 2010, 2(9), pp 69-76.
- [16] Maryadele, J. O'Neil., Eds., In; The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals, 14thEdn; Merck & Co., Inc., Whitehouse Station. NJ, 2006,6839, 1178.

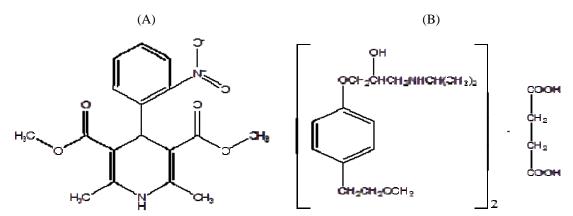


Fig.1(A) is Structure of Nifedipine and (B) is structure of Metoprolol Succinate.

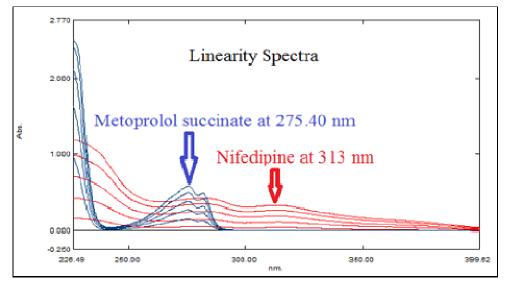


Figure 4.1.1 Overlainzero orderspectra of NIF and MET (1:5) ratios, respectively

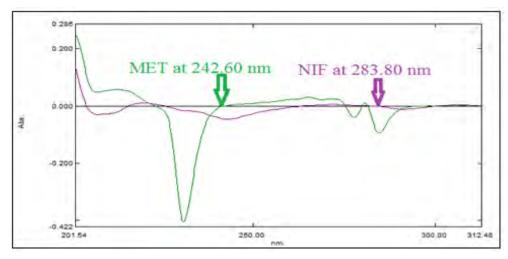
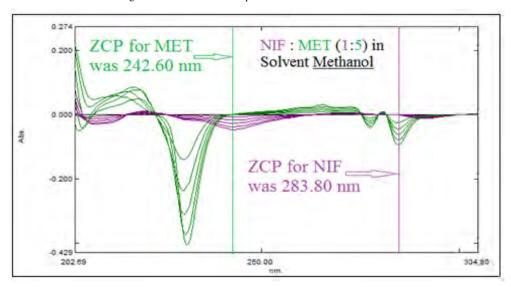



Fig.4.1.2 Overlain firstorderspectra of NIF and MET in 1:5 ratios

 $Fig. 5.1.1\ Overlain linear first order spectra of NIF\ (Purple)\ and MET (Green)\ in 1:5\ ratios$ $Table\ 1 Calibration data\ for NIF\ and MET at 283.80\ nm and 242.60\ nm,\ respectively.\ *(n=6)$

Sr. No	Concentration (μg/ml)		Absorbance* (283.800 nm)±SD NIF	Absorbance* (245.60nm)±SD	
	NIF	MET	mm)±SD NIF	MET	
1	5	25	-0.025±0.00011	-0.008±0.00011	
2	10	50	-0.042±0.00016	-0.017±0.00010	
3	15	75	-0.055±0.00024	-0.028±0.00012	
4	20	100	-0.072±0.00015	-0.038±0.00014	
5	25	125	-0.086±0.00023	-0.047±0.00015	

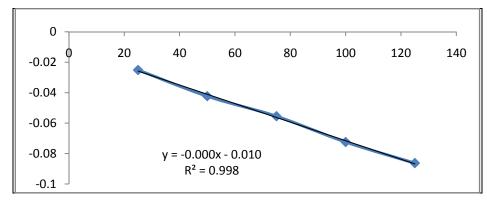
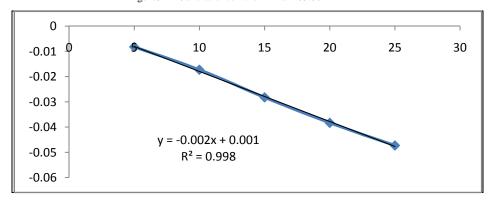



Figure 5.1.2 Calibration curve for NIF at 283.80 nm

 $Figure 5.1.3 Calibration curve for MET\ at\ 242.60\ nm$

Table 2 Intraday precision data for estimation of NIF and MET*(n=3)

Conc. (µg/ml)		Abs.* (NIF)	%	Abs. (MET)*	%
NIF	MET	Avg. ± SD(271.20nm)	RSD	Avg.± SD(245.60nm)	RSD
2	50	-0.0151 ± 0.00025	0.612	-0.0096 ± 0.00060	0.863
3	75	-0.0303 ± 0.00040	0.687	-0.0201 ± 0.00077	0.738
4	100	-0.0455 ± 0.00036	0.457	-0.0304 ± 0.0085	0.630

Table 3Interday precision data for estimation of NIF and MET*(n=3) $\,$

Conc. (μg/ml)		Abs. (NIF)* Avg. ± SD(271.20nm)	%	Abs. (MET)*	%
NIF	MET	Avg. ± SD(2/1.20mm)	RSD	Avg.± SD(245.60nm)	RSD
2	50	-0.0272 ± 0.00020	0.764	-0.0685 ± 0.00060	0.875
3	75	-0.0402 ± 0.00036	0.896	-0.1048 ± 0.00096	0.910
4	100	-0.0548 ± 0.00036	0.653	-0.1371 ± 0.00111	0.812

Table 4Recovery data of NIF*(n=3)

Conc. ofNIF from formulation (µg/ml)	Amount of Std. NIF added (µg/ml)	Total amount of NIF (µg/ml)	Total amount ofNIF found (µg/ml) Mean*± SD	% Recovery* (n=3)	% RSD NIF
4	3.2	7.2	7.18 ± 0.00015	99.76	0.213
4	4.0	8.0	7.95 ± 0.00026	99.37	0.315
4	4.8	8.8	8.58 ± 0.00035	99.80	0.402

Table 5 Recovery data of MET*(n=3)

Conc. ofMET from formulation (µg/ml)	Amount of Std. MET added (μg/ml)	Total amount of MET (µg/ml)	Total amount ofMET found (μg/ml) Mean*± SD	% Recovery* (n=3)	% RSD MET
40	16	36	35.75 ± 0.00025	99.30	0.351
40	20	40	39.90 ± 0.00057	99.75	0.436
40	24	44	43.65 ± 0.00042	99.20	0.514

Table 6LOD andLOQ dataofNIF andMET *(n=10)

Conc. (µg/ml)		Abs.* (NIF)	%	Abs.* (MET)	%
NIF	MET	Avg. \pm SD(283.80 nm)	RSD	Avg. ±SD(242.60 nm)	RSD
5	25	-0.02217 ± 0.000048	0.805	-0.01128 ± 0.00012	0.614
LOD (µg/ml)		0.032		0.831	
LOC	Q (μg/ml)	0.098		2.520	

 $Table\ 7 Robustness and Ruggedness\ data of\ NIF\ and MET*(n=3)$

Conc.	Nifedipine (Mean Abs.* ±% RSD)						
(PPM)	Instrument 1	Instrument 2	Stock – 1	Stock – 2			
2	-0.0273 ± 0.857	-0.0231 ± 0.827	-0.0253 ± 0.605	-0.0222 ± 0.657			
3	-0.0350 ± 0.390	-0.0324 ± 0.755	-0.0313 ± 0.487	-0.0312 ± 0.560			
4	-0.0549 ± 0.471	-0.0531 ± 0.553	-0.0543 ± 0.280	-0.0523 ± 0.521			
	Metoprolol Succinate (Mean Abs.* ±% RSD)						
50	-0.0157 ± 0.338	-0.0101 ± 0.731	-0.0151 ± 0.686	-0.0111 ± 0.513			
75	-0.0268 ± 0.713	-0.0232 ± 0.438	-0.276 ± 0.489	$-0.0.245 \pm 0.629$			
100	-0.0282 ± 0.138	-0.0288 ± 0.669	-0.291 ± 0.291	-0.0281 ± 0.709			

Table 8 Analysisdata of commercial formulation *(n=3)

Sr. No.	Formulation (synthetic mixture)		(synthetic		Absorbance* (283.80 nm) NIF	%Assay NIF±SD	Absorbance* (242.60 nm) MET	%Assay MET±SD
	NIF	MET						
1			-0.0026		-0.0070			
2	4	20	-0.0025	99.87 ± 0.776	-0.0068	99.52 ± 0.861		
3			-0.0023		-0.0068			

Table 9Summary of validation parameters

	First-derivativeUV Spectrometry			
PARAMETERS	Nifedipine	Metoprolol Succinate		
Concentration range(µg/ml)	5-25	25-125		
Regression equation	y = -0.0006x - 0.0101	y = -0.002x + 0.002		
Correlation Coefficient(r ²)	0.9980	0.9989		
Accuracy(%Recovery) (n=3)	99.64	99.41		
Intra-dayPrecision (%RSD) (n=3)	0.657-0.987	0.630-0.863		
Inter-dayprecision (%RSD) (n=3)	0.653-0.896	0.812-0.910		
LOD(µg/ml)	0.032	0.831		
LOQ(µg/ml)	0.098	2.520		
Ruggedness and Robustness	0.280-0.857	0.291-0.890		
%Assay	99.87	99.52		